ТВОРЧЕСТВО

ПОЗНАНИЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

Одной из возможных реализа-
ций теплового ключа является трубка, наполненная гелием, кото-
рый мы, меняя давление можем переводить изсвехтекучего состоя-
ния в нормальное и обратно.
4.3.2 ТЕРМОМЕХАНИЧЕСКИЙ ЭФФЕКТ.
Если нагреть Не II в одном из сосудов ,сообщающихся между
собой через тонкий капилляр или пористую перегородку, то в нем
за счет перехода в обычную понизится концентрация сверхтекучей
компоненты. Т.к. сверхтекучая компонента, стремясь к установ-
лению равновесия, будет по капилляру поступать из ненагретого
сосуда, а нормальная компонента из нагретого выходить не бу-
дет, уровень гелия в нагреваемом сосуде увеличится .

Этот эффект может быть использован для создания своеоб-
разных насосов Не II .
4.3.3 МЕХАНО-КАЛОРИЧЕСКИЙ ЭФФЕКТ.
Если повысить давление в одном из сосудов , рассматривае-
мых в предыдущем пункте, заполненных Не , находящемся в
сверхтекучем состоянии, то сквозь капилляр будет протекать
только сверхтекучая компонента.

Сверхтекучая компонента теплоту из сосуда , из которого
она вытекает , не уносит, вследствие чего температура внутри
этого сосуда будет повышаться. Температура же сосуда , в кото-
рый притекает сверхтекучая компонента будет уменьшаться.

На основе этого эффекта П.Л.Капицей был построен охлади-
тель. Одна ступень охладителя давала перепад температур 0.4 К.

Достоинствами метода является то, что его холодопроизво-
дительность не уменьшается с понижением температуры.

Используя Не II ка холодильный агент возможно в принципе
приблизиться сколь угодно близко к температуре абсолютного ну-
ля.
4.3.4 ПЕРЕНОС ПО ПЛЕНКЕ.
Поверхность тела, соприкасающегося с Не II покрывается
пленкой сверхтекучего гелия, по которой может происходить пе-
ренос жидкости из оного сосуда в другой.

Так, например , пустой сткан, погруженный не до краев в
Не II через некоторое время заполнится гелием. Скорость пере-
носа от разности уровней жидкости не зависит , и определяется
только периметром стенок в самом узком месте соединения.

Поскольку тонкую пленку можно рассматривать как капилляр,
то при переносе гелия на пленке имеет место термохимический
эффект. Можно усилить эффект , увеличив периметр тела, соеди-
няющего два сосуда, например, вставив пучок проволок.

Эффект нашел применение для разделения изотопов гелия Не-
3 и Не-4. Не-3 не свехтекучий, и по пленке сосуда, содержащего
смесь изотопов удаляется сам собой только изотоп Не-4.
Движение пленки можно остановить , если поместить пленку
между обкладками конденсатора, на который подано напряжение с
частотой 40-50 Герц.
4.4.1 ЭФФЕКТ ТОМСА.
Сопротивление , оказываемое трубопроводом потоку жидкости
при ламинарном режиме течения меньше , чем при турбулентном.

В 1948 г. Б.Томс ( Англия ) установил, что при добавлении
в воду полимерной добавки трение между турбулентным потоком и
трубопроводом значительно снижается .

Сам Томс работал с полиметилметакрилатом, растворенным в
монохлорбензоле; в последующие годы ученые и изобретатели в
различных странах нашли много других присадок, работающих еще
более эффективно.

Практическое применение эффекта Томса весьма разнообразно
: по традиции "смазывают" различными присадками трубопроводы,
"смазывают" полимерами морские и речные суда, напорные колонны
глубоких скважин и т.д.

Эффект Томса обуславливается образованием на границе
твердое тело-жидкость молекулярных растворов, которые ограни-
чивают турбулентность потока. Установлено , что добавка поли-
меров более эффективно действует при высоких скоростях потока
, где развивающаяся турбулентность потока больше.
Патент США N 3435796 : В устройстве, уменьшающем сопро-
тивление подводного аппарата, используется слабый раствор по-
лимера, образующий в пограничном слое забортной воды при сме-
щении подогретой жидкой смеси либо гранулированного или
порошкообразного полимера с морской водой. Подогретая жидкая
смесь представляет собой дисперсию макромолекул полимера,
растворимую в морс при температуре окружающей среды, но не-
растворимую в воде температуре выше 70 градус Цельсия.Когда по-
догретая жидкая смесь попадает в холодную воду при соответс-
твующих условиях окружающей среды, микрочастицы набухают и
растворяются, образуя клейкую массу. В пограничном слое обте-
кающего потока они образуют молекулярный раствор макромолекул,
препятствуя турбулизации потока.
А.с. N 244032: Способ снижения потерь напора при переме-
щении жидкости по трубопроводу, отличающийся тем, что с целью
достижения жидкостью свойства псевдопластичности, в нее вводят
длинноцепочный полимер, например полиакриламид, в колличестве
0,01-0,2% по весу.
Снижение гидродинамического сопротивления может быть до
за счет образования под воздействием какого-либо поля из моле-
кул самой жидкости присадок, аналогичных по свойствам полимер-
ным молекулам.
А.с. N 364493: Способ снижения гидродинамического сопро-
тивления движению тел, например, судов, путем уменьшения сил
трения в пограничном слое, отличающийся тем, что с целью упро-
щения способа и повышения его эксплуатационной надежности пу-
тем исключения подачи в пограничные слои высокомолекулярных
составов, в пограничном слое создают электромагнитное поле,
генерирующее комплексы молекул.

Применение способа по п.1 для решения внутренней задачи,
например, для снижения сопротивления жидкости в трубопроводе.
4.4.2. С к а ч о к у п л о т н е н и я.
Что такое лобовое сопротивление при обтекании твердых тел
потоком жидкости или газа - общеизвестно. Однако, кроме лобо-
вого сопротивления, при обтекании возникает так называемое
волновое сопротивление, являющееся результатом затрат энергии
на образование акустических или ударных волн. В газе, напри-
мер, ударные волны возникают при образовании скачка уплотнения
у лобовой поверхности тела при обтекании его сверхзвуковым по-
током газа. При образовании скачка уплотнения резко увеличива-
ется плотность, температура, давление и скорость вещества по-
тока; в результате могут иметь место процессы диссоциации и
ионизации молекул, сопровождающиеся мощным световым излучени-
ем. Световое излучение может сильно разогреть как газ перед
фронтомволны, так и поверхность движущегося тела.
4.4.3. Э ф ф е к т К о а н д а.
Румынский ученый Генри Коанд в 1932 году установил, что
струя жидкости, вытекающая из сопла, стремится отклониться по
направлению к стенке и при определенных условиях прилипает к
ней.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72