ТВОРЧЕСТВО

ПОЗНАНИЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

Таким образом механика, как самостоятельная наука, начала зарождаться в Италии. Настоящим же основателем динамики по справедливости считают Галилея, который открыл: начало инерции, начало независимости движения и нашел законы падения тел. Исследования Галилея по механике изложены в его сочинениях: 1)"Discorso intorno alle cose che stanno in su l'acqua о che in quello si muovono", 2) «Dialogo intorno ai due niassimi sistemi del mondo», 3)"Discorsi e dimonstrationi matematiche intorno a due nuove scienze" и 4) «Della scienza mессаniса». При своей жизни Галилей приобрел славу более астрономическими своими открытиями, но наибольшая его заслуга состоит, как замечает Лагранж, именно в открытии законов падения тел: нужен был гений, чтобы выяснить закон явления самого обыденного и в то же время управляющего движениями миров, как это было впоследствии обнаружено Ньютоном. Гюйгенс, пополнивший многие исследования Галилея, установил точные понятия о центробежной силе и о законах колебания маятника и этим еще более подготовил путь к открытию всемирного притяжения, сделанному Ньютоном, поставившим механику на прочные основания изложением ее основных принципов. В книге Ньютона, появившейся в 1687 году под заглавием: «Philosophiae Naturalis Principia mathematica» и не имеющей себе равной по значению в истории развития точных наук, основные начала механики изложены в виде трех законов: 1. Закон инерции: каждое тело пребывает в своем состоянии покоя или равномерного прямолинейного движения, если действующие на него силы не принуждают его изменить такое состояние. II. Закон величин действия: изменение движения пропорционально приложенной действующей силе и происходит по той прямой линии, по которой действует сила. III. Закон противодействий: всякому действию соответствует противодействие равное и противоположное, то есть, действия двух тел одно на другое всегда равны и направлены противоположно. Эта книга Ньютона и открытое им же, одновременно с Лейбницем, дифференциальное и интегральное исчисление дали сильный толчок дальнейшему развитию М. Яков и Даниил Бернулли, Клеро, Эйлер и многие другие ученые исследовали целый ряд механических задач первостепенной важности. Недоставало принципа, связующего динамику со статикою.
Этот принцип найден был Даламбером и изложен в его «Traite de Dynamique», появившейся в 1743 г. Свобода движения тел и точек бывает иногда стеснена известного рода условиями, состоящими, например, в том, что точка может двигаться только по известной поверхности; такая поверхность или вообще все, что стесняет движение, называется связью. Связи оказывают некоторые сопротивления – реакции – на точку или систему точек. Начало Даламбера состоит в том, что равнодействующая всех данных сил, приложенных к каждой из точек рассматриваемой системы, разлагается на две составляющих: на потерянную силу, уравновешивающуюся благодаря реакциям связей, и на движущую силу, сообщающую точке то самое ускорение, какое бы она сообщила свободной точке, обладающей той же массою. Это начало приводит исследование движения к исследованию равновесия, потому что может быть выражено так: данные силы и считаемые в обратную сторону движущие силы должны в течение движения находиться в равновесии. Этим началом воспользовался Лагранж и в своей «Мecanique Analytique» (1788) свел решение каких бы то ни было вопросов М. на решение уравнений, устанавливаемых для всех вопросов совершенно однообразным способом и вытекающих из одной общей формулы. Лагранж создал аналитическую М. Аналитическая М. представляет собою науку о движении, приведенную к интегрированию некоторых общих уравнений и к исследованию получаемых результатов. Всякое тело представляется совокупностью материальных точек. Положение каждой точки определяется ее координатами. Лагранж выходит из начала возможных перемещений. Благодаря существованию связей, не все движения системы возможны. Элементы путей, пробегаемые точками в весьма малые промежутки времени, при каком-либо возможном движении системы через занимаемое ею положение, называются возможными перемещениями. Работою называется произведение пути, пройденного точкою, на приложение силы на этот путь. Начало возможных перемещений состоит в том, что система находится в равновесии, если сумма работ заданных сил на протяжении возможных перемещений равна нулю. Так, например: возможные перемещения концов рычага, на которые действуют параллельные силы, суть весьма малые дуги, описанные концами рычага как радиуса из точки опоры и соответствующие общему углу отклонения рычага. Эти дуги пропорциональны плечам и проходятся в противоположные стороны. Чтобы работы сил на протяжении этих дуг, служащих возможными перемещениями, в сумме давали нуль, необходимо, чтобы силы были обратно пропорциональны плечам. Этот пример представляет собою вывод законов рычага из начала возможных перемещений, Лагранж применяет это начало к потерянным силам для всякого случая движения и для всякой системы точек. Выразив, что сумма работ потерянных сил на протяжении возможных перемещении равна нулю, Лагранж получил общее уравнение движения: где dx, dy, dz суть проложения возможных перемещении на оси координат. Из этой общей формулы Лагранж выводит систему уравнений, данную им в двух формах, которые, как и общая формула, содержать в себе дифференциалы. Решение всякого механического вопроса заключается после этого в освобождении формул Лагранжа от дифференциалов, т. е. в интегрировании лагранжевых уравнений. Общий способ их интегрирования был исследован самим Лагранжем, Гaмильтoнoм, Пуассоном, Коши, Якоби, Мейером, Остроградским, Коркиным, Имшенецким и многими другими. В настоящее время в особенности замечательны в этом направлены работы Софуса-Ли и Фукса.
Из основных законов М. или из общих уравнений Лагранжа могут быть выведены некоторые весьма общие положения, которые в прежнее время принимались за основные начала, но после Лагранжа служат более к тому, что прямо дают некоторые интегралы уравнений М. Эти положения суть: 1) начало движения центра инерции, состоящее в следующем: при движении системы материальных точек существует определяемая их конфигурацией геометрическая точка, называемая центром инерции, движение этой точки происходит так, как будто бы она была свободною точкою, в которой сосредоточена масса всей системы и к которой приложены заданные силы. Если точки тяжелые, то их центр инерции есть в то же время их общий центр тяжести. Начало движения центра инерции проявляется, напр., при разрыве летящей гранаты, осколки которой разбрасываются во все стороны, но общий их центр тяжести описывает тот самый путь, который был бы описан центром тяжести гранаты, если бы она не лопнула. 2) Закон площадей применим ко всем тем случаям, когда в каждом положении системы возможно всякое ее вращение около неподвижного начала координат О.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260