ТВОРЧЕСТВО

ПОЗНАНИЕ


ПОИСК КНИГ    ТОП лучших авторов книг Либока   

научные статьи:   пассионарно-этническое описание русских и других народов мира,   конфликты в Сирии и на Украине по теории гражданских войн,   действующие идеологии России, Украины, ЕС и США  
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

Но те, которые не были возрождены новой верой, жаждали бобов и рано или поздно восставали.

Мальвольо. Что душа нашей бабки может обитать в птице.
Шут. Что ты мыслишь об этом мнении?
Мальвольо. Я мыслю о душе благородно и никоим образом не одобряю его мнения.
Шут. Прощай. Пребывай во тьме. Пока ты не согласишься с мнением Пифагора, я не признаю тебя в уме; и смотри не убей кулика, чтобы не обездолить души твоей бабки. Прощай. (См. В. Шекспир. Двенадцатая ночь, или Что угодно. М., 1953, с. 72.)

Вот некоторые предписания пифагорейского ордена:
1. Воздерживайся от употребления в пищу бобов.
2. Не поднимай то, что упало.
3. Не прикасайся к белому петуху.
4. Не ломай хлеба.
5. Не шагай через перекладину.
6. Не размешивай огонь железом.
7. Не откусывай от целой булки.
8. Не ощипывай венок.
9. Не сиди на мерке в одну кварту.
10. Сердца не ешь.
11. Не ходи по большой дороге.
12. Не дозволяй ласточкам жить под крышей.
13. Вынимая горшок из огня, не оставляй следа его на золе, но помешай золу.
14. Не смотрись в зеркало около огня.
15. Когда встаешь с постели, сверни постельное белье и разгладь оставшиеся на нем следы твоего тела Цит. по: J. Burnet. Early Greek Philosophy, см. также: Фрагменты ранних греческих философов, с. 138–149.

.
Все эти правила относятся к примитивным представлениям табу.
Корнфорд («От религии к философии») говорит, что, по его мнению, «школа Пифагора представляет собой главное течение в той мистической традиции, которую мы противопоставляем научной тенденции». Он рассматривает Парменида, которого считает «открывателем логики», как «ответвление пифагореизма и самого Платона – как человека, который нашел в итальянской философии главный источник своего вдохновения». Пифагореизм, говорит он, был движением реформы в орфизме, а орфизм был движением реформы в культе Диониса. Проходящая через всю историю противоположность между рациональным и мистическим впервые появляется у греков как противоположность между олимпийскими богами и теми другими, менее цивилизованными богами, которые имеют больше сходства с примитивными верованиями, представляющими собой предмет рассмотрения антропологов. При этом разделении Пифагор стоит на стороне мистицизма, хотя его мистицизм был специфически интеллектуального рода. Пифагор приписывал себе полубожественный характер и, по-видимому, говорил: «Разумные живые существа подразделяются на [три вида]: люди, боги и существа, подобные Пифагору» Фрагменты ранних греческих философов, с. 141.

. Все системы, вдохновленные Пифагором, говорит Корнфорд, стремятся к потусторонности; они относят все ценности к невидимому единству в Боге и проклинают видимый мир как ложный и иллюзорный, как мутную среду, в которой лучи божественного света преломляются и рассеиваются среди тьмы и тумана».
Как говорит Дикеарх, Пифагор учил, «во-первых, что душа… бессмертна, во-вторых, что она переселяется в другие виды животных, в-третьих, что все, что некогда произошло, через определенные периоды [времени] происходит снова, а нового нет абсолютно ничего, и [в четвертых], что все живые существа… следует считать родственными друг другу» Фрагменты ранних греческих философов, с. 143.

. Говорят, что Пифагор, подобно святому Франциску, произносил перед животными проповеди.
В организованное им общество на равных условиях принимались и мужчины и женщины; все члены общества владели собственностью сообща и вели одинаковый образ жизни. Точно так же научные и математические открытия считались коллективными и мистическим образом приписывались Пифагору даже после его смерти. Гиппас из Метапонта, нарушивший это правило, потерпел кораблекрушение от божественного гнева, вызванного его неблагочестивостыо.
Но какое отношение имеет все это к математике? Через этику математика оказывается связанной с прославлением созерцательного образа жизни. Барнет следующим образом резюмирует эту этику:

«Мы в этом мире странники, наше тело – гробница души, тем не менее мы не должны пытаться в самоубийстве искать средство выхода из этого мира, ведь мы все в руках Бога, Он наш пастырь, и без Его приказания мы не имеем права покидать этот мир. Три сорта людей существует в этом мире, их можно сравнить с тремя категориями людей, приходящих на Олимпийские игры. Низший класс состоит из тех, кто приходит покупать и продавать, следующий, повыше, из тех, кто состязается. Но лучше всех, однако, те, кто приходит просто смотреть. Именно беспристрастная наука является, следовательно, важнейшим из всех прочих средством очищения; и человек, посвятивший себя науке, – настоящий философ, он наиболее полно освобождается от „круговорота рождения”» J. Burnet. Early Greek Philosophy, p. 108.

.

Изменения в значениях слов иногда очень поучительны. Выше я говорил о слове «оргия», теперь я хочу рассмотреть слово «теория». Это слово было первоначально орфическим словом, которое Корнфорд истолковывает как «страстное и сочувственное созерцание». В этом состоянии, говорит Корнфорд, «зритель отождествляет себя со страдающим Богом, умирает с его смертью и рождается снова вместе с его возрождением». Пифагор понимал «страстное и сочувственное созерцание» как интеллектуальное созерцание, к которому мы прибегаем также в математическом познании. Таким образом, благодаря пифагореизму слово «теория» постепенно приобрело свое теперешнее значение, но для всех тех, кто был вдохновлен Пифагором, оно сохранило в себе элемент экстатического откровения. Это может показаться странным для тех, кто немного и весьма неохотно изучал математику в школе, но тем, кто испытал опьяняющую радость неожиданного понимания, которую время от времени приносит математика тем, кто любит ее, пифагорейский взгляд покажется совершенно естественным, даже если он не соответствует истине. Легко может показаться, что эмпирический философ – раб исследуемого материала, но чистый математик, как и музыкант, – свободный творец собственного мира упорядоченной красоты.
В барнетовском описании пифагорейской этики интересно отметить противоположность ее современным оценкам. Например, на футбольном матче люди, мыслящие по-современному, считают, что игроки гораздо важнее простых зрителей. Эти люди подобным же образом относятся и к государству: они больше восхищаются такими политиками, которые являются конкурентами в политической игре, нежели теми людьми, которые являются только зрителями. Эта переоценка ценностей связана с изменением социальной системы: воин, благородный, плутократ и диктатор – каждый имеет свои собственные нормы добра и истины. В философской теории тип благородного сохранялся довольно долго, потому что этот тип был связан с греческим гением, потому что добродетель созерцательности получила теологическое одобрение, потому что идеал познания беспристрастной истины отождествлялся с академической жизнью. Благородный должен быть определен как член общества равных, которые живут плодами рабского труда или, во всяком случае, плодами труда людей, чье более низкое положение не вызывает сомнений. Необходимо заметить, что под это определение подходят и святой и мудрец, поскольку эти люди живут скорее созерцательной, чем активной жизнью.
Современные определения истины, которые даются, например, прагматизмом или инструментализмом – скорее практическими, чем созерцательными учениями, – являются продуктом индустриализма в его противоположности аристократизму.
Что бы мы ни думали о социальной системе, которая относится терпимо к рабству, мы обязаны чистой математикой благородным в вышеупомянутом смысле слова. Идеал созерцательной жизни, поскольку он вел к созданию чистой математики, оказался источником полезной деятельности. Это обстоятельство увеличило престиж самого этого идеала, оно принесло ему успех в области теологии, этики и философии, успех, которого в противном случае могло бы и не быть.
Так обстоит дело с объяснением двух сторон деятельности Пифагора: Пифагора как религиозного пророка и Пифагора как чистого математика. В обоих отношениях его влияние неизмеримо, и эти две стороны не были столь самостоятельны, как это может представляться современному сознанию.
При своем возникновении большинство наук было связано с некоторыми формами ложных верований, которые придавали наукам фиктивную ценность. Астрономия была связана с астрологией, химия – с алхимией. Математика же была связана с более утонченным типом заблуждений. Математическое знание казалось определенным, точным и применимым к реальному миру; более того, казалось, что это знание получали, исходя из чистого размышления, не прибегая к наблюдению. Поэтому стали думать, что оно дает нам идеал знания, по сравнению с которым будничное эмпирическое знание несостоятельно. На основе математики было сделано предположение, что мысль выше чувства, интуиция выше наблюдения. Если же чувственный мир не укладывается в математические рамки, то тем хуже для этого чувственного мира. И вот всевозможными способами начали отыскивать методы исследования, наиболее близкие к математическому идеалу. Полученные в результате этого концепции стали источником многих ошибочных взглядов в метафизике и теории познания. Эта форма философии начинается с Пифагора.
Как известно, Пифагор говорил, что «все вещи суть числа». Если это положение истолковать в современном духе, то в логическом отношении оно кажется бессмыслицей. Но то, что понимал под этим положением Пифагор, – не совсем бессмыслица. Пифагор открыл, что число имеет большое значение в музыке; об установленной им связи между музыкой и арифметикой напоминают до сих пор такие математические выражения, как «гармоническое среднее» и «гармоническая прогрессия». В его представлении числа, наподобие чисел на игральных костях или картах, обладают формой. Мы все еще говорим о квадратах и кубах чисел, и этими терминами мы обязаны Пифагору. Пифагор точно так же говорил о продолговатых, треугольных, пирамидальных числах и т. д. Это были числа горстей гальки (или, более естественно для нас, числа горстей дроби), требуемые для образования формы. Пифагор, очевидно, полагал, что мир состоит из атомов, что тела построены из молекул, состоящих в свою очередь из атомов, упорядоченных в различные формы. Таким образом, он надеялся сделать арифметику научной основой в физике, так же как и в эстетике.
Положение, согласно которому сумма квадратов сторон прямоугольного треугольника, прилежащих к прямому углу, равна квадрату третьей стороны – гипотенузы, было величайшим открытием Пифагора или его непосредственных учеников. Египтяне знали, что треугольник, стороны которого равны 3,4 и 5, является прямоугольным, но, очевидно, греки первыми заметили, что 3^2 + 4^2 = 5^2 и, исходя из этого предположения, открыли доказательство общей теоремы.
К несчастью для Пифагора, эта его теорема сразу же привела к открытию несоизмеримости, а это явление опровергало всю его философию. В прямоугольном равнобедренном треугольнике квадрат гипотенузы равен удвоенному квадрату любой из сторон. Предположим, что каждый катет равен одному дюйму; какова в таком случае длина гипотенузы? Допустим, что ее длина равна m/n дюймов. Тогда m ^2 /n ^2 = 2. Если m и n имеют общий множитель, разделим их на него. В таком случае по крайней мере или m , или n должно быть нечетным. Но теперь учтем, что раз m ^2 = 2 n ^2, следовательно, m ^2 – четное и, стало быть, m – четное, a n нечетное. В таком случае, следовательно, предположим, что m = 2 р . Тогда 4 p ^2=2 n ^2; следовательно, n ^2 = 2 p ^2, следовательно n – четное, что противоречит допущению. Поэтому гипотенузу нельзя измерить дробным числом m/n . Это доказательство является, по существу, доказательством, которое приводится у Евклида в книге Х Однако это доказательство не принадлежит самому Евклиду. См.: ГЛ. Heath. Greek Mathematics. Вышеприведенное доказательство, вероятно, было известно еще Платону.

.
Это доказательство говорит о том, что, какую бы единицу длины мы ни выбрали, существуют отрезки, которые не находятся в точном числовом отношении к этой единице, то есть что нет таких двух целых чисел тип , при которых рассматриваемый отрезок, взятый m раз, был бы равен единице длины, взятой n раз.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Загрузка...

научные статьи:   расчет возраста выхода на пенсию в России,   схема идеальной школы и ВУЗа,   циклы национализма и патриотизма  
загрузка...