ТВОРЧЕСТВО

ПОЗНАНИЕ


ПОИСК КНИГ      ТОП лучших авторов Либока
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

Модели молекул - Китайгородский Александр Исаакович
Модели молекул - это книга, написанная автором, которого зовут Китайгородский Александр Исаакович. В библиотеке LibOk вы можете без регистрации и без СМС скачать бесплатно ZIP-архив этой книги, в котором она находится в формате ТХТ (RTF) или FB2 (EPUB или PDF). Кроме того, текст данной электронной книги Модели молекул можно комфортно и без регистрации прочитать онлайн прямо на нашем сайте.

Размер архива для скачивания с книгой Модели молекул равен 105.95 KB

Модели молекул - Китайгородский Александр Исаакович - скачать бесплатно электронную книгу, без регистрации




Александр Исаакович Китайгородский
Модели молекул

Александр Китайгородский
Модели молекул

Полезно помнить, что слова выдуманы человеком.
Слова, которыми пользуются в жизни, имеют часто расплывчатый характер. Не все понимают одинаково слова сила и красота, энергия и напряжение. Да и «хорошая» погода разная для разных людей.
В науке такое положение дел не имеет места, во всяком случае не должно иметь. В особенности нетерпимо относятся к неточному использованию слов в физике.
Простейшие физические понятия придумывались для описания свойств и поведения предметов и тел, среди которых идет наша жизнь, короче говоря, для «больших» тел или, как еще мы говорим, для тел макроскопических.
Какие понятия, заимствованные из макромира, можно применять к молекулам? Все или некоторые? Истина лежит посредине.
А как обстоит дело с геометрическими и механическими понятиями? Можно ли говорить о форме молекулы, о ее упругости, о модуле изгиба и кручения, наконец, о пластичности молекул? Имеют ли смысл, и какой, понятия внутримолекулярных и межмолекулярных сил?
Цель этой статьи – показать, что с известными оговорками перенос на молекулу геометрических и механических понятий не только возможен, но и целесообразен.
Эта фраза означает следующее. В ряде случаев о молекуле можно говорить как о большом теле.
Тело, которому данную молекулу можно уподобить, назовем механической моделью молекулы.
Наша задача – рассказать, как эта модель строится и как используется для решения различных физических проблем.
Механическая модель молекулы получила в последнее время широкое распространение в связи с интересом к громадным (по сравнению с атомом) молекулам, из которых построены синтетические полимеры – капрон, найлон, полиэтилен (эти названия известны теперь каждому), а также важнейшие для жизнедеятельности животных и растений вещества – белки, нуклеиновые кислоты и так далее.
Всякое «изображение» молекулы должно состоять из описания взаимного расположения атомных ядер и характеристики движущихся около этих ядер электронов.
Химический опыт позволяет установить атомное строение молекулы (построить ее атомную модель), то есть указать, из каких атомов и как связанных друг с другом состоит молекула. Часть электронов тесно связана с определенными атомами, другая часть «обобществлена». Про эти электроны химики говорят – «они осуществляют химическую связь».
Конечно, атомная модель молекулы значительно проще электронно-ядерной. Но эта простота достигается за счет существенной потери. Теряется знание закона взаимодействия «строительных» частиц.
В электронно-ядерной модели взаимодействие между частицами, обеспечивающее структуру и свойства молекулы, – это электрическое взаимодействие между электронами и ядрами. Оно описывается законом Кулона: энергия взаимодействия электрона и ядра (или двух электронов, или двух ядер) равна e 1 e 2 /r (r – мгновенное расстояние между частичками.)
Что же касается закона взаимодействия атомов, то он более сложен.
Может быть, испугаться этой трудности и предпочесть ясную электронно-ядерную картину молекулы? Нет, это было бы неверно. Правдивость самой картины отнюдь не является ее главным достоинством. Важно, чтобы наша модель молекулы хорошо «работала». А «хорошо работать» – это значит быстро и надежно предсказывать. Как бы точна ни была модель, но если «работать» с ней трудно, то мы задумаемся о другой, пусть более грубой, но зато более «работоспособной» модели.
Именно поэтому при изучении геометрии и механики молекулы мы отдаем предпочтение атомной модели. Сделать расчеты с помощью электронно-ядерной модели молекулы оказывается в этом случае нереалистичным, когда речь идет об интересующих нас проблемах: слишком много взаимодействующих частиц.
В то же время атомная модель молекулы позволяет истолковать и предсказать большую совокупность явлений.
В механической модели молекулы мы «забываем» про электроны и рассматриваем атом как кирпич мироздания. В механической модели за структуру и свойства молекулы отвечают взаимодействия атомов.
Модель молекулы можно нарисовать на бумаге, изготовить из проволоки, из шариков на пружинках… Существует множество типов моделей. Подходящим масштабом является сто миллионов. Размеры молекул указывают обычно в ангстремах. Один ангстрем – это стомилионная доля сантиметра. Расстояния между центрами атомов лежат в границах 1–2 ангстрема. Поэтому и удобен стомилионный масштаб: расположив центры «атомов» на расстояниях один-два сантиметра, мы легко разглядим детали строения, да и изготовлять шарики и срезы шариков (зачем нужны срезы, мы скажем ниже) такого размера вполне удобно.
В зависимости от целей и от личных вкусов используют те или иные модели. Пока что остановимся на скелетных моделях, то есть таких, в которых показаны (стерженьками) силы, соединяющие атомы в молекулу. Эти силы называют химическими, или валентными. О том, какие атомы с какими связаны, химики научились судить по химическим реакциям еще задолго до того, как физики научились устанавливать структуру молекулы своими методами.
Итак, обратившись за указанием к химику, мы получаем от него сведения о том, как атомы присоединены друг к другу. Скажем, формула молекулы этилового спирта C 2 H 5 OH еще ничего не говорит о том, как соединены атомы между собой. Эта формула – так называемая брутто формула сообщает лишь сведения о составе. Разъясняя строение молекулы химик укажет нам: три атома водорода (рис. 1) соедините черточками с атомом углерода. (Эта группа атомов называется метильной.) Теперь, пожалуйста, соедините валентной черточкой атом углерода этой группы со вторым атомом углерода. Этот второй атом, кроме того, надо связать с парой атомов водорода, а четвертую черточку (раз четыре черточки от одного атома, значит, он четырехвалентный) приведите к атому кислорода. Оставшийся атом водорода следует присоединить к атому кислорода.

Физик сразу же задаст вопрос. А на каком расстоянии атомы, под какими углами друг к другу идут валентные черточки? На подобные вопросы ответы могут быть получены физическими исследованиями. Оставим пока что в стороне вопрос о том, каким образом устанавливается физическими опытами геометрия молекулы. Обширные данные собраны в толстые справочники. В них можно найти сведения о том, на каких расстояниях находятся химически связанные атомы и какие углы (их называют валентными углами) образуют между собой «стерженьки», символизирующие химические валентные силы. Если не очень придираться к тонким различиям, то окажется, что расстояния между атомами одного сорта достаточно универсальны, правда, валентные углы более переменчивы. Поэтому предсказать структуру молекулы не всегда просто. Но об этом речь будет впереди.
Теперь мы можем обратиться к проблеме межмолекулярных сил.
То, что между молекулами действуют силы, очевидно из самых элементарных соображений. Пар любого вещества при подходящих условиях сгущается в каплю. Если так, то молекулы несомненно притягиваются. Вещество сопротивляется сжатию. Значит, находясь на малых расстояниях, молекулы отталкиваются друг от друга. Если на больших расстояниях существует притяжение, а на малых отталкивание, значит, есть и равновесное состояние, когда эти силы уравновешиваются.
Вместо сил взаимодействия гораздо удобнее говорить об энергии взаимодействия. См. статью Г.Я. Мякишева «Взаимодействие атомов и молекул», «Квант» № 11, 1971 г.

Энергию взаимодействия и мерить легче, и понятие это более простое и ясное, чем сила. По кривой энергии взаимодействия можно найти и силу: сила численно равна тангенсу угла наклона касательной к кривой энергии взаимодействия.

Энергией взаимодействия молекул (или атомов, или любых других частиц или тел) называется работа, которую нужно затратить для того, чтобы развести частицы далеко друг от друга – так, чтобы взаимодействие прекратилось. Математик скажет – отдалить на бесконечно большое расстояние. Чем ближе частицы, тем больше работа, необходимая для того, чтобы их оторвать друг от друга.

Модели молекул - Китайгородский Александр Исаакович - читать бесплатно электронную книгу онлайн


Полагаем, что книга Модели молекул автора Китайгородский Александр Исаакович придется вам по вкусу!
Если так выйдет, то можете порекомендовать книгу Модели молекул своим друзьям, установив ссылку на данную страницу с произведением Китайгородский Александр Исаакович - Модели молекул.
Возможно, что после прочтения книги Модели молекул вы захотите почитать и другие бесплатные книги Китайгородский Александр Исаакович.
Если вы хотите узнать больше о книге Модели молекул, то воспользуйтесь любой поисковой системой или Википедией.
Биографии автора Китайгородский Александр Исаакович, написавшего книгу Модели молекул, на данном сайте нет.
Отзывы и коментарии к книге Модели молекул на нашем сайте не предусмотрены. Также книге Модели молекул на Либоке нельзя проставить оценку.
Ключевые слова страницы: Модели молекул; Китайгородский Александр Исаакович, скачать, читать, книга, произведение, электронная, онлайн и бесплатно.
загрузка...