ТВОРЧЕСТВО

ПОЗНАНИЕ


ПОИСК КНИГ      ТОП лучших авторов Либока
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

Рассел Бертран

Логический атомизм


 

Логический атомизм - Рассел Бертран
Логический атомизм - это книга, написанная автором, которого зовут Рассел Бертран. В библиотеке LibOk вы можете без регистрации и без СМС скачать бесплатно ZIP-архив этой книги, в котором она находится в формате ТХТ (RTF) или FB2 (EPUB или PDF). Кроме того, текст данной электронной книги Логический атомизм можно комфортно и без регистрации прочитать онлайн прямо на нашем сайте.

Размер архива для скачивания с книгой Логический атомизм равен 20.79 KB

Логический атомизм - Рассел Бертран - скачать бесплатно электронную книгу, без регистрации




Бертран Рассел
Логический атомизм

Бертран Рассел
Логический атомизм

Философия, которую я отстаиваю, в целом рассматривается как разновидность реализма и обвиняется в противоречивости из-за элементов, которые в ней выглядят противоречащими этой доктрине. Со своей стороны, я не рассматриваю спор между реалистами и их оппонентами как фундаментальный. Я могу изменить мой взгляд на этот спор, не изменив моей мысли относительно доктрины, которую хотел бы подчеркнуть. Я утверждаю, что логика является фундаментальной для философии и поэтому школы должны скорей характеризоваться своей логикой, чем метафизикой Моя собственная логика является атомистической и именно этот аспект я хотел бы подчеркнуть в ней. Таким образом, я предпочитаю называть мою философию скорее «логическим атомизмом», чем «реализмом», с некоторым прилагательным или без него.
В качестве введения может быть полезно сказать несколько слов об историческом развитии моих взглядов. Я пришел к философии через математику, или скорей через желание найти некоторые основания для веры в истинность математики. С ранней юности я страстно верил, что в ней может быть такая вещь, как знание, что сочеталось с большой трудностью в принятии многого того, что проходит как знание. Казалось, что наилучший шанс обнаружить бесспорную истину будет в чистой математике, однако некоторые из аксиом Евклида были, очевидно, сомнительными, а исчисление бесконечно малых, когда я его изучал, содержало массу софизмов, с которыми я не мог справиться сам. Но я не имел никаких оснований сомневаться в истинности арифметики, хотя тогда я не знал, что арифметика может рассматриваться как охватывающая всю традиционную чистую математику. В возрасте восемнадцати лет я прочел «Логику» Милля, но был глубоко разочарован его доводами для оправдания арифметики и геометрии. (Речь идет о «Системе логики» (1843) Джона Стюарта Милля – прим.ред.) Я не прочел еще Юма, но мне казалось, что чистый эмпиризм (который я был расположен принять) должен скорее привести к скептицизму, чем к подтверждению выдвигаемых Миллем научных доктрин. В Кембридже я прочел Канта и Гегеля, так же как и Логику" Брэдли, которая глубоко повлияла на меня. (Брэдли Фрэнсис Герберт (1846–1924) – главный представитель английского абсолютного идеализма.
Критиковал традицию британского номинализма и эмпиризма, а также ассоциативную психологию. По Брэдли, в процессе познания всегда дается нечто универсальное, поэтому ориентация эмпиристов на фиксацию и обобщение изолированных фактов несостоятельна. Объективно-идеалистическая метафизика Брэдли построена на противопоставлении противоречивой сферы «видимости» и подлинной реальности – «Абсолюта» Для его «Принципов логики» (1883) характерно влияние гегелевской диалектической логики и антипсихологистская установка. Брэдли негативно воспринял новую математическую логику – прим.ред.). Несколько лет я был учеником Брэдли, но примерно в 1898 г я изменил свои взгляды в значительной мере в результате дискуссии с Д. Э. Муром Я не мог больше полагать, что познание оказывает влияние на то, что познается. Также я убедился в справедливости плюрализма Анализ математических утверждений склонил меня к тому, что они не могут быть объяснены даже как частичные истины, если не допускается плюрализм и реальность отношений Случай привел меня в это время к изучению Лейбница, и я пришел к заключению (впоследствии подтвержденному мастерскими исследованиями Кутюра), что большинство его характерных мнений было обязано чисто логической доктрине, что каждое суждение имеет субъект и предикат. (Кутюра Луи (1868–1914) – французский логик, одним из первых обративший внимание на современное значение логических идей Лейбница – прим.ред.) Эту доктрину Лейбниц разделял со Спинозой, Гегелем и Брэдли. Мне показалось, что если ее отвергнуть, то весь фундамент метафизики этих философов разрушится. Я, таким образом, вернулся к проблеме, которая вначале привела меня к философии, а именно к основаниям математики, применив к ней новую логику, разработанную в основном Пеано и Фреге, которая доказала (по крайней мере, так я считаю) значительно большую плодотворность, чем логика традиционной философии. (Пеано Джузеппе (1858–1932) – итальянский математик, разработавший систему логических аксиом, на основе которых должна была строиться арифметика – прим. ред.). В первую очередь я обнаружил, что многие из прежних философских аргументов о математике (заимствованных в основном от Канта) оказались тем временем несостоятельными благодаря прогрессу математики. Неевклидовы геометрии подорвали аргументацию трансцендентальной эстетики. Вейерштрасс показал, что дифференциальное и интегральное исчисления не требуют концепции бесконечно малых, и, следовательно, все то, что было сказано философами о таких предметах, как непрерывность пространства, времени и движения должно рассматриваться как явная ошибка. (Вейерштрасс Карл Теодор Вильгельм (1815–1897) – немецкий математик, занимавшийся логическим обоснованием математического анализа – прим. ред.). Кантор освободил концепцию бесконечного числа от противоречий и тем самым справился с антиномиями как Канта, так и Гегеля. Наконец, Фреге показал детально, как арифметика может быть выведена из чистой логики без привлечения каких-либо новых идей или аксиом, таким образом, опровергнув утверждение Канта, что «7 + 5 – 12» является синтетическим – по крайней мере в обычной интерпретации этого утверждения. (Кантор Георг (1845–1918) – немецкий математик, один из создателей современной теории множеств. Фреге Готлоб (1848–1925) – немецкий математик и логик, один из создателей логической семантики– прим. ред.). Поскольку все эти результаты были получены не с помощью какого-либо героического метода, а посредством терпеливых детальных рассуждений, я стал думать, что философия, вероятно, заблуждалась, применяя героические средства для разрешения интеллектуальных трудностей, которые можно было преодолеть просто с помощью большей внимательности и аккуратности в рассуждениях. Такой взгляд со временем все больше и больше укреплялся и привел меня к сомнению относительно того, отличается ли философия как исследование от науки и обладает ли она своим собственным методом, являющимся чем-то большим, чем неудачным наследием теологии.
Исследование Фреге не было завершено в первую очередь потому, что оно было применено только к арифметике, а не к другим ветвям математики. Во-вторых, потому, что его посылки не исключали некоторых противоречий, которым оказались подвержены все прошлые системы формальной логики. В сотрудничестве с Уайтхедом мы попытались устранить оба этих недостатка в книге "Principia Mathematical, которой, однако, недостает окончательности в некоторых фундаментальных пунктах (особенно в аксиоме сводимости). (Уайтхед, Альфред Норт (1861–1947) – английский математик и философ, одно время был соавтором и коллегой Рассела по Кембриджскому университету. Впоследствии его деятельность проходила в США.
Отойдя от логико-математической проблематики, он стал развивать «философию организма», заниматься эволюционной космологией, вопросами связи науки и религии – прим. ред.). Но вопреки этим недостаткам, я думаю, никто из читавших данную книгу не будет оспаривать ее основное содержание, а именно, что вся чистая математика может быть выведена из некоторых идей и аксиом формальной логики с помощью логики отношений, без обращения к каким-либо новым неопределенным понятиям или недоказанным утверждениям. Технические методы математической логики, которые разработаны в этой книге, мне представляются весьма мощными и способными обеспечить новый инструмент для обсуждения многих проблем, которые до сих пор оставались предметом философской неопределенности. Книга «Понятие природы и принципы познания природы» Уайтхеда может служить иллюстрацией к тому, что я имею в виду.
Когда чистая математика строится как дедуктивная система, то есть как множество всех тех утверждений, которые могут быть выведены из заданных посылок, тогда становится очевидным, что если мы убеждены в истинности чистой математики, то не потому лишь, что убеждены в истинности множества посылок.

Логический атомизм - Рассел Бертран - читать бесплатно электронную книгу онлайн


Полагаем, что книга Логический атомизм автора Рассел Бертран придется вам по вкусу!
Если так выйдет, то можете порекомендовать книгу Логический атомизм своим друзьям, установив ссылку на данную страницу с произведением Рассел Бертран - Логический атомизм.
Возможно, что после прочтения книги Логический атомизм вы захотите почитать и другие бесплатные книги Рассел Бертран.
Если вы хотите узнать больше о книге Логический атомизм, то воспользуйтесь любой поисковой системой или Википедией.
Биографии автора Рассел Бертран, написавшего книгу Логический атомизм, на данном сайте нет.
Отзывы и коментарии к книге Логический атомизм на нашем сайте не предусмотрены. Также книге Логический атомизм на Либоке нельзя проставить оценку.
Ключевые слова страницы: Логический атомизм; Рассел Бертран, скачать, читать, книга, произведение, электронная, онлайн и бесплатно.
загрузка...