ТВОРЧЕСТВО

ПОЗНАНИЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

«Его слова заставили меня задуматься над этой проблемой,- вспоминает Сциллард,- и в октябре 1933 г. мне пришла в голову мысль, что цепная реакция могла бы стать реальностью, если бы удалось найти элемент, который, поглощая один нейтрон, эмитировал бы два других. Сначала мне казалось, что таким элементом может быть бериллий, затем - некоторые другие элементы, включая и уран. Но по тем или иным причинам критический эксперимент так и не был мной осуществлен».
Будучи ученым-реалистом, он старался предвидеть последствия, старался угадать вероятную реакцию политиков, крупных промышленников и военных, если в один прекрасный день действительно удастся получить атомную энергию. Однако до сих пор еще никто не сумел проникнуть сквозь несокрушимую оболочку атома и использовать для практических целей дремлющую в нем энергию. Но уже многие исследователи работали над этой проблемой и ее решение казалось не таким уж далеким и, поскольку такая возможность уже «носилась в воздухе», то обычное безразличие правительств, несомненно, должно было смениться их острым интересом.
Подобные соображения заставили Сцилларда уже в 1935 г. обратиться ко многим ученым-атомникам с вопросом, не считают ли они благоразумным воздержаться, по крайней мере временно, от опубликования результатов их работ, имея в виду серьезные и, возможно, даже опасные последствия их исследований. Большинство из тех, к кому он обращался, отвергли его предложение. В конце концов, казалось, не было шансов на то, чтобы крепость атома была когда-нибудь взята.
Сциллард же вел разговоры уже о том, как поступить с трофеем. Из-за этой «преждевременной тревоги» он приобрел репутацию человека, постоянно думающего о третьем и четвертом шагах до того, как будут сделаны первый и второй.
Однако некоторых других ученых беспокоили такие же тревожные мысли.
Поль Ланжевен, так много сделавший в те годы для беженцев из «Третьего рейха», был серьезно обеспокоен и пытался в несколько своеобразной манере утешить бежавшего из Германии студента-историка: «Вы воспринимаете все это слишком серьезно»,- говорил он.- «Гитлер? Не так уже много осталось до того момента, когда он подобно всем тиранам сломает себе шею. Я значительно больше беспокоюсь кой о чем другом. Это нечто такое, что может причинить миру гораздо больший ущерб, чем этот бесноватый, который рано или поздно отправится ко всем чертям. Это вещь, от которой нам теперь уже не отделаться: я имею в виду нейтрон».
Молодому историку до сих пор приходилось только случайно слышать о нейтроне и он вряд ли мог поэтому заподозрить в нем что-либо опасное. Он, так же как и большинство его друзей, не осознавал того, что великие научные открытия могут гораздо сильнее влиять на ход истории, чем могущественные диктаторы.
В те времена, четверть века назад, недооценка политики людьми науки превышалась только недооценкой значения науки, наблюдавшейся среди политиков и широкой публики. Если сравнить статистически, сколько раз в те дни произносилось имя «Гитлер» и сколько раз слово «нейтрон», то отношение миллион к одному, возможно, окажется даже слишком заниженным. Настолько мало мы сами, даже в наш «век информации», можем судить о том, какие современные нам события окажутся в итоге важными и уже сегодня являются предзнаменованием будущего.
Только лишь с конца 1945 г., когда весь мир осознал значение открытия атомной энергии, стало очевидным, что расщепление атома следует рассматривать как поворотный пункт в мировой истории.
Как знаменательно необычайное совпадение, что в один и тот же год был открыт нейтрон (февраль 1932 г.), был избран президент США Рузвельт (ноябрь 1932 г.) и Гитлер возглавил германское правительство (январь 1933 г.).
Прошло семь роковых лет, прежде чем физики осознали значение нейтрона во всей его полноте, семь лет, в течение которых атомы были уже расщеплены с помощью нейтронов в Париже, Кембридже, Риме, Цюрихе и Берлине. Но истинного значения этого факта никто еще не понимал, в том числе и сами ученые. С 1932 г. до конца 1938 г. они просто отказывались верить тому, что показывали их приборы, а поэтому не удивительно, что и государственные люди, к счастью, еще не догадывались о возможностях необычайно мощного оружия, уже появившегося в сфере их деятельности. Интересно, каковы были бы последствия, если бы цепную реакцию в уране правильно истолковали в Риме в 1934 г., когда ее удалось там осуществить? Не оказались бы Муссолини и Гитлер первыми в разработке атомной бомбы? Началась бы гонка атомного вооружения до второй мировой войны? Велась бы эта война с применением атомного оружия с обеих сторон?
Физик Эмилио Сегре принимал участие в этих успешных, но неправильно истолкованных экспериментах в столице Италии. Через 20 лет, на похоронах своего учителя Энрико Ферми, он сказал: «Бог по его собственным непостижимым мотивам сделал в то время всех нас слепыми в отношении явления расщепления ядра».
Открытие нейтрона произошло именно в Кембридже в резерфордовской лаборатории далеко не случайно. В 1931 г. в Цюрихе на Конгрессе физиков немцы Бете и Бекер заявили, что они, бомбардируя бериллий альфа-частицами, наблюдали весьма сильное излучение, которое, однако, не удалось объяснить. Это заявление вызвало сенсацию.
Исследователи всех стран немедленно попытались повторить эксперимент и выявить природу замеченного излучения. Жолио-Кюри и его жена в известной мере решили загадку. Не позже чем через месяц после опубликования их первых результатов Чэдвик, работавший почти непрерывно над этой же проблемой (и подбадриваемый Резерфордом), объявил, что в загадочном явлении участвуют нейтроны. Их существование было предсказано Резерфордом еще 17 лет назад.
Своим успехом Чэдвик в значительной мере был обязан превосходной измерительной аппаратуре и, в частности, новому усилителю, который тогда только что был изобретен. В 1932 г. в мире не было ни одного физического исследовательского учреждения, которое обладало бы столь блестящей аппаратурой, как лаборатория Кавендиша в Кембридже.
В области атомных исследований огромное значение имеет измерительная аппаратура. Только с ее помощью невидимые глазом предметы исследований становятся ощутимыми и измеримыми. Эти приборы, без применения которых практически невозможно вмешательство человека в мир частиц наимельчайших размеров, к концу первой мировой войны все еще оставались чрезвычайно примитивными. Исследователи по старой привычке «стряпали» их из проволоки, воска и стеклянных сосудов, которые они сами выдували. Однако, чем глубже они пытались проникнуть внутрь неизвестного, тем сложнее требовалось оборудование и тем труднее было его изготавливать.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74