ТВОРЧЕСТВО

ПОЗНАНИЕ

 

Примерно в то же время (1705 г.)
Томас Ньюкомен (1663—1729), работавший совместно с Севери, изобрел паровую машину, которая могла работать на паре под более низким давлением (рис. 5). Однако машина Ньюкомена не была универсальной, и ее можно было использовать практически только для поднятия воды. Конструкция машины была значительно усовершенствована шотландским механиком Джеймсом Уаттом (1736—1819), который и считается создателем универсальной паровой машины.

Рис. 5. Насосное устройство конструкции Ньюкомена, работавшее при атмосферном давлении. Впрыснутая в цилиндр вода вызывает конденсацию пара, в цилиндре создается вакуум, и поршень опускается вниз. Новая порция пара, поступающая в цилиндр из парового котла, возвращает поршень в исходное положение.
Появление паровой машины ознаменовало собой начало промышленной революции: человек получил машину, которая, казалось, могла переделать всю тяжелую работу на свете. Человек перестал зависеть от капризов силы ветра или месторасположений падающей воды, энергию которой можно было использовать для механической работы.
Не совсем обычное использование огня в паровой машине возродило у химиков интерес к процессу горения. Почему одни предметы горят, а другие не горят? Что представляет собой процесс горения? По представлениям древних греков все, что способно гореть, содержит в себе элемент огня, который в соответствующих условиях может высвобождаться. Алхимики придерживались примерно той же точки зрения, но считали, что способные к горению вещества содержат элемент «сульфур» (хотя необязательно саму серу).
В 1669 г. немецкий химик Иоганн Иоахим Бехер (1635—1682) попытался дать рационалистическое объяснение явлению горючести. Он предположил, что твердые вещества состоят из трех видов «земли», и один из этих видов, названный им «жирная земля» (terra pinguis), принял за «принцип горючести». Последователем весьма туманных представлений Бехера был немецкий врач и химик Георг Эрнст Шталь (1660—1734). Он еще раз обновил название «принцип горючести», назвав его флогистоном — от греческого ????????? — горючий. Шталь предложил схему процесса горения, объяснявшую роль флогистона.
Согласно Шталю, горючие вещества богаты флогистоном. В процессе горения флогистон улетучивается, а то, что остается после завершения процесса горения, флогистона не содержит и потому продолжать гореть не может. Шталь далее утверждал, что ржавление металлов подобно горению дерева. Металлы, по его мнению, содержат флогистон, а ржавчина (или окалина) флогистона уже не содержит. Такое понимание процесса ржавления позволило дать приемлемое объяснение и процессу превращения руд в металлы — первому теоретическому открытию в области химии. Объяснение Шталя состояло в следующем. Руда, содержание флогистона в которой мало, нагревается на древесном угле, весьма богатом флогистоном. Флогистон при этом переходит из древесного угля в руду, в результате древесный уголь превращается в золу, бедную флогистоном, а руда, бедная флогистоном, превращается в металл, богатый флогистоном.
Сам по себе воздух, по мнению Шталя, способствует горению лишь косвенно: он служит переносчиком флогистона, когда последний выходит из дерева или металла, и передает его другому веществу (если таковое существует).
Теория флогистона Шталя на первых порах встретила резкую критику. Особенно возражал против нее знаменитый голландский врач Герман Бургаве (1668—1738), который считал, что обычное горение и образование ржавчины не могут быть по сути дела одним и тем же явлением. Ведь горение сопровождается образованием пламени, а ржавление происходит без пламени. Сам Шталь объяснял это различие тем, что при горении веществ, подобных дереву, флогистон улетучивается настолько быстро, что нагревает окружающую среду и становится видимым. При ржавлении флогистон улетучивается медленно, поэтому пламя не появляется.
Несмотря на критику Бургаве, теория флогистона начала завоевывать популярность. К 1780 г. она была принята химиками почти повсеместно, так как позволила дать четкие ответы на многие вопросы. Однако один вопрос ни Шталь, ни его последователи разрешить не смогли. Дело в том, что большинство горючих веществ, например дерево, бумага, жир, при горении в значительной степени исчезали. Остававшаяся сажа или зола была намного легче, чем исходное вещество. Этого, по-видимому, и следовало ожидать, так как при горении флогистон улетучивался из вещества.
Согласно теории Шталя, в процессе ржавления металлы также теряли флогистон, тем не менее еще алхимиками в 1490 г. было установлено, что ржавый металл гораздо тяжелее нержавого. Почему вещество, теряющее флогистон, становится тяжелее? Может быть, как утверждали некоторые химики XVIII в., флогистон обладает отрицательным весом? Почему в таком случае дерево при горении уменьшается в весе? Или, может быть, существуют два вида флогистона — с положительным и с отрицательным весом?
Химикам XVIII в. эта проблема не казалась столь важной, как это представляется нам теперь. Мы привыкли к тщательному анализу явлений, и необъяснимое изменение веса, конечно, взволновало бы нас. Химики же XVIII столетия еще не сознавали важности точных измерений, и изменением в весе они могли и пренебречь. Теория флогистона объясняла причины изменения внешнего вида и свойств веществ, а изменения веса, как в то время считалось, не так уж важны [27].
Глава 4 Газы
Углекислый газ (диоксид углерода) и азот
Непонятные изменения веса веществ при горении, как выяснилось, связаны с появлением или исчезновением газов во время горения. Хотя существование газов было установлено очень давно и еще за век до Ван Гельмонта (см. гл. 1) началось медленное накопление знаний о газах, даже во времена Шталя химики, принимая сам факт существования газов, фактически не обращали на них никакого внимания. Размышляя над причинами изменения веса веществ в процессе горения, исследователи принимали в расчет только твердые тела и жидкости. Понятно, что зола легче дерева, так как при горении дерева выделяются пары. Но что это за пары, никто из химиков сказать не мог. Ржавый металл тяжелее исходного металла. Может быть, при ржавлении металл получает что-то из воздуха? Ответа не было.
Чтобы ответить на этот и подобные вопросы, химики должны были начать систематическое изучение газов, должны были научиться работать со столь трудно уловимыми веществами.
Важный шаг в этом направлении в начале XVIII в. сделал английский ботаник и химик Стивен Гейлс (1677—1761). Он изобрел прибор для собирания газов над водой. Этот прибор известен нам под названием «пневматической ванны». Пары, образующиеся в результате химической реакции, Гейлс отводил через трубку в сосуде водой, опущенный вверх дном в ванну с водой.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57