ТВОРЧЕСТВО

ПОЗНАНИЕ

 


Но химики лишь отчасти виноваты в том, что путь к неосуществимой цели оказался столь долгим. Все дело в том, что количественные методы Галилея и Ньютона очень трудно приложить к химии. Ведь для этого необходимо результаты химических опытов представить таким образом, чтобы их можно было подвергнуть математической обработке.
И все же химики делали успехи, и уже во времена Галилея наблюдались слабые приметы грядущей революции в химии. Эти приметы имелись например, в работе фламандского врача Яна Баптиста Ван Гельмонта (1579—1644). Ван Гельмонт выращивал дерево в заранее отмеренном количестве почвы, куда систематически добавлял воду, и систематически тщательно взвешивал дерево. Поскольку Ван Гельмонт надеялся обнаружить источник живой ткани, образуемой деревом, то можно сказать, что он применял измерение и в химии, и в биологии [21].
До Ван Гельмонта единственным известным и изученным воздухоподобным веществом был сам воздух, который казался достаточно характерным и непохожим на другие вещества, чтобы древние греки посчитали его одним из элементов (гл. 1). Несомненно алхимики в своих опытах часто получали что-то подобное «воздуху» и «пару», но эти вещества были почти неуловимы, их трудно было изучать и наблюдать и легко было не заметить. О том, что к этим веществам относились как к таинственным, говорят хотя бы их названия. Так, спирт в переводе с латинского означает «дух», «душа», «дыхание».
Ван Гельмонт первым из химиков обратил внимание на пары, образующиеся в процессе некоторых реакций, и начал их изучать. Он обнаружил, что пары в чем-то напоминают воздух, но во многом от него и отличаются. В частности, он нашел, что на воздух похожи и пары, образующиеся при горении дерева, хотя ведут себя они несколько иначе.
Эти воздухоподобные вещества, не имеющие постоянного объема или формы, напомнили Ван Гельмонту греческий «хаос» — вещество первоздания, бесформенное и беспорядочное, из которого (согласно древнегреческой мифологии) был создан космос. Ван Гельмонт назвал эти пары «хаосом», но, согласно фламандскому фонетическому строю, это слово произносится как газ [22]. Так называют воздухоподобные вещества и в наше время.
Газ, полученный при горении дерева и изученный им с особой тщательностью, он назвал «лесной газ» (gas sylvestre). Сегодня мы называем этот газ диоксидом углерода. При изучении газов как простейшей формы материи впервые была использована техника точных измерений, т. е. количественного исследования явлений, которая и послужила столбовой дорогой в мир современной химии.
Закон Бойля [23]
К концу жизни Ван Гельмонта интерес к газам и особенно к воздуху — наиболее распространенному газу неожиданно возрос. В 1643 г. итальянский физик Эванджелиста Торричелли (1608—1647) сумел доказать, что воздух оказывает давление. Торричелли показал, что воздух может поддерживать столбик ртути высотой в 28 дюймов Так был изобретен барометр. После этого открытия газы стали казаться менее загадочными. Как выяснилось, подобно жидкостям и твердым веществам, они имеют вес и от жидкостей и твердых веществ отличаются главным образом гораздо меньшей плотностью.
Немецкий физик Отто фон Герике (1602—1686) убедительно показал, что атмосферный воздух имеет вес. Герике изобрел воздушный насос, при помощи которого воздух выкачивали из сосуда, так что давление воздуха снаружи сосуда становилось больше, чем внутри. В 1654 г. по заказу Герике был изготовлен прибор, состоящий из двух медных полушарий (чтобы соединение было плотным, между полушариями помещали кожаное кольцо, пропитанное раствором воска в скипидаре). Соединив эти полушария, Герике откачал из полученного шара воздух. Наружный воздух давил на полушария и удерживал их вместе, так что их не могли разъединить упряжки лошадей, изо всех сил тянувшие полушария в разные стороны. Когда же Герике впускал в шар воздух, полушария распадались сами. Этот опыт вошел в историю науки как опыт с «магдебургскими полушариями».
Такого рода демонстрации повышали интерес к свойствам воздуха. В частности, они привлекли внимание ирландского химика Роберта Бойля (1627—1691). Сконструированный Бойлем воздушный насос был совершеннее насоса Герике. Освоив методику откачивания воздуха из сосуда, Бойль решил попытаться сделать обратное — сжать воздух.
В ходе опытов Бойль обнаружил, что объем данной массы воздуха обратно пропорционален давлению (рис. 4). Заливая ртуть в очень длинную трубку особой U-образной формы, Бойль запирал пробу воздуха в коротком запаянном конце трубки. Добавляя ртуть в длинный открытый конец трубки, можно было увеличить давление. Когда Бойль добавил такое количество ртути, при котором давление на воздух увеличивалось вдвое (удвоенная масса ртути), объем воздуха уменьшился также вдвое. Если давление увеличивалось втрое, объем уменьшался втрое. В то же время, если давление снижалось, объем увеличивался. Открытая Бойлем обратная зависимость объема от давления получила название закона Бойля . Первое сообщение об этом законе было опубликовано в 1662 г.
Бойль не оговорил особо, что его закон действителен только при постоянной температуре. Возможно, он понимал это и считал само собой разумеющимся. Французский физик Эдм Мариотт (1630—1684), независимо от Бойля открывший этот закон в 1676 г., особо подчеркивал, что такая зависимость объема от давления наблюдается только при постоянной температуре. По этой причине закон Бойля в континентальной Европе часто называют законом Мариотта .

Рис. 4. Схема опыта (а ), показывающего, что объем газа обратно пропорционален давлению при постоянной температуре (закон Бойля), и полученная кривая зависимости объем — давление (б ). Ртуть, налитая в длинное плечо U-образной трубки, запирает воздух в коротком плече. С увеличением массы ртути высота столбика воздуха уменьшается.
Закон Бойля явился первой попыткой применить точное измерение при выяснении причин изменения веществ [24]. Опыты Бойля привлекли внимание атомистов, к числу которых принадлежал и сам Бойль. Как уже отмечалось выше, атомистические взгляды античных ученых, изложенные в поэме Тита Лукреция Кара (см. гл. 1), разделяли многие европейские ученые того времени. Убежденным атомистом был и французский философ Пьер Гассенди (1592—1655), под влиянием которого сторонником атомистической теории стал и Бойль [25].
Однако, пока химики занимались изучением только жидкостей и твердых веществ, доказать справедливость этой теории было чрезвычайно трудно, и во времена Бойля таких доказательств было ничуть не больше, чем во времена Демокрита (см. гл. 1). Жидкости и твердые вещества подвергаются сжатию лишь в незначительной степени. Если эти вещества и состоят из атомов (материя дискретна) и атомы в них соприкасаются между собой, то больше сблизить их нельзя.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57