ТВОРЧЕСТВО

ПОЗНАНИЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 


В третьем варианте усилителя (рис. 32, в) функции входного транзистора выполняет микросхема DA1 на полевых транзисторах. Достоинство такой замены — высокое входное сопротивление (оно определяется сопротивлением резистора R1 и в зависимости от требований может быть в пределах от нескольких десятков килоом до 1 МОм).

Рис. 32. Маломощные усилители речи роботов на микросхемах
Все рассмотренные усилители при входном напряжении 30…50мВ обеспечивают выходную мощность 0,1…0,12 Вт. Ток, потребляемый ими в режиме покоя, не превышает соответственно З…ЗД 2… 2,5 и 4…4,5 мА; при максимальной громкости 40 мА. Усилители не критичны к типу используемых деталей и обладают запасом устойчивости.
Микросхему К504УН1Б можно заменить полевыми транзисторами КП103Е, КП201Е, КП201Ж или КП201И. При использовании оксидных конденсаторов К50 — 6, резисторов МЛТ — 0,125 и переменного резистора СПЗ — Зб размеры платы этого усилителя не превышают 25 х 30 мм.
Выходные ступени описанных усилителей в налаживании не нуждаются. Их чувствительность можно регулировать изменением сопротивления резисторов, подключённых к выводу 2 микросхемы, в пределах 240 Ом…2,7 кОм (при уменьшении сопротивления чувствительность увеличивается).
Необходимо иметь в виду, что номинальное значение сопротивления резистора R3 и входное сопротивление усилителя по схеме на рис. 45, а зависят от сопротивления резистора R1. Резистор R3 подбирают, контролируя напряжение на коллекторе транзистора VT1, которое должно находиться в пределах 1,4…1,7 В.

5. МОДЕЛИРОВАНИЕ СЛУХА
БИОНИКА И СЛУХ
Исключительное значение для роботостроения имеет совершенствование технических приборов, воспринимающих звуковые сигналы. Звук быстро позволяет передавать командные и управляющие сигналы. Разработка новых систем слуха, пригодных для роботов, также основана на бионических исследованиях.
Способность человеческого мозга разбираться с помощью слухового аппарата в хаосе звуков является одним из его самых чудесных свойств. «Наивысшим и совершеннейшим человеческим приспособлением» назвал звуковую речь человека выдающийся русский физиолог И. П. Павлов. Физическая природа звуковой речи хранит в себе множество тайн. Как образуются звуки в голосовом аппарате человека, как они воспринимаются слухом и от чего зависит характер звука — вот проблемы, которые ещё по сей день занимают интересы учёных, работающих в самых разнообразных областях науки. Чтобы машины могли безошибочно выделять какой — то один образ из множества других сходных, нужно точное знание его признаков. Но как выбрать такие признаки? Над решением этой задачи во всём мире работают физиологи, специалисты по бионике, психологии и инженеры, математики и конструкторы. Если фотоэлемент можно назвать грубой моделью органа зрения, то микрофон напоминает органы слуха в гораздо меньшей степени.
Учёные-бионики, преодолевая трудности, пытаются разгадать секреты слуха человека. К таким секретам относится, например, способность выделять нужный голос среди шума и десятков других голосов. Задача сложная, но нельзя отказываться от неё только потому, что она трудна.
Речь состоит из слогов, слов, фраз и т.д. Элементарной частью речи является звук (фонема). С физической точки зрения звуки речи различают по частоте, громкости и продолжительности. В речи нет чётких границ между звуками. Одни специалисты пытаются распознавать речь по фонемам, другие считают, что для этого следует использовать форманты частоты, присущие звучанию каждой буквы, произносимой человеком. Примером удачного решения задачи является фонетическая пишущая машинка, созданная учёными Г. Олсоном и Г. Беларом.
Устройство можно рассматривать как сложный аналог слухового аппарата, части мозга, нервной системы и нервно-мышечного аппарата человека, печатающего под диктовку. Бионическая схема человека, печатающего под диктовку, и схема фонетической пишущей машинки показаны на рис. 33. Чтобы понять принцип работы устройства, проследим, как перерабатывается звуковая информация по пути её следования.
Звуковая энергия улавливается наружным ухом человека, передаётся по слуховому проходу и воздействует на барабанную перепонку среднего уха. Механическое движение перепонки передаётся жидкости, которая заполняет улитку (внутреннее ухо), при помощи слуховых косточек, перемещающихся нелинейно. При этом происходит компрессия сигнала, т.е. более громкие звуки уменьшаются сильнее, чем тихие.
На рис. 33 показаны схематическое изображение «развёрнутой» улитки и частоты, воспринимаемые pa зличными её участками. Здесь происходит первичный анализ информации. Окончательно её анализирует мозг, куда сигналы поступают по слуховому нерву. На основе результатов этого анализа мозг вырабатывает команды, посылаемые мышцам руки, нажимающей на соответствующие клавиши пишущей машинки.
В машине, распознающей речь, голос оператора воспринимает микрофон и преобразует в электрические колебания.
После усиления и компрессии речевой сигнал поступает на анализатор частот — блок из восьми полосовых фильтров, охватывающих диапазон 250… 10000 Гц, и систему детекторов сравнения амплитуд. Последняя собрана так, что реле, соответствующее данному каналу, включается, лишь когда уровень в этом канале больше среднего в двух соседних.
Речь опознается по группе фонем, составляющих слог, а не по отдельным фонемам (так как распознать многие фонемы вне контекста очень трудно). В слоговой памяти хранятся комбинации сигналов, соответствующие различным произношениям одного и того же слога или слова. Распознавание слога представляет собой определённый вид процесса сравнения с имеющимися в слоговой памяти образцовыми матрицами звукосочетаний.
Если слог опознан, срабатывает то реле из памяти написания, которое связано с написанием данного слога. В памяти написания (орфографической памяти) имеются типовые комбинации сочетания букв, представляющих 40 фонем для заданных 100 слогов. Реле соединено с линиями очерёдности следования букв и с линиями кода букв в блоке управления печатанием, который, в свою очередь, управляет работой буквенных приводов — происходит печатание выбранных букв.
Таким образом, слово печатается в соответствии с заранее определённым написанием, которое по необходимости должно быть одинаковым для одинаково звучащих слов. Именно поэтому устройство и было названо «фонетической пишущей машинкой».

Рис. 33 Схема фонетической пишущей машинки
Действующие, проектируемые и перспективные приборы для опознавания речи можно разделить на несколько видов. Мы дали им совершенно условные названия.
«Сезам» — устройство, в котором реализовано сказочное заклинание «Сезам, откройся!
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28