ТВОРЧЕСТВО

ПОЗНАНИЕ

 

Сначала считалось, что элементы образовывались путем последовательного добавления по одной ядерной частице к атомному ядру, начиная с простейшего элемента – водорода, ядро которого состоит из одного протона. При построении таким образом ядра гелия, состоящего из четырех ядерных частиц (двух протонов и двух нейтронов) не возникало никаких проблем, но уже следующий шаг оказался невозможным, так как не существует стабильных ядер с пятью ядерными частицами. В конце концов, решение проблемы было найдено Эдвином Солпитером в 1952 г. Оно заключалось в том, что при столкновении двух ядер гелия внутри звезды может образоваться нестабильное ядро изотопа 8Ве, и прежде чем это ядро распадется обратно на два ядра гелия, оно может поглотить еще одно ядро гелия, образовав ядро углерода. Однако, как подчеркнул в 1954 г. Фред Хойл, для того, чтобы такой процесс мог осуществиться и привести к наблюдаемой распространенности углерода в космосе, должно существовать состояние ядра углерода с такой энергией, чтобы вероятность его образования при столкновении ядер гелия и бериллия-8 была аномально велика. (Именно такое состояние было затем найдено экспериментаторами, работавшими вместе с Хойлом.) Если в звездах образуется углерод, то уже нет никаких препятствий для образования и всех более тяжелых элементов, включая кислород и азот, необходимых для известных форм жизни. Но чтобы все это работало нужно, чтобы энергия того самого состояния ядра углерода была очень близка к сумме энергий ядра бериллия-8 и ядра гелия. Если бы энергия такого состояния была слишком большой или слишком маленькой, в звездах смогло бы образоваться слишком мало ядер углерода или более тяжелых элементов, а из одних ядер водорода и гелия не могла бы возникнуть жизнь. Энергии ядерных состояний сложным образом зависят от всех физических констант, таких как массы и заряды разных типов элементарных частиц. На первый взгляд, кажется очень примечательным, что все константы должны иметь такие значения, которые позволяют образоваться ядрам углерода в описанной реакции.
Все же мне не кажутся очень убедительными свидетельства того, что законы природы специально настроены так, чтобы сделать возможной жизнь. С одной стороны, группа физиков показала недавно, что можно существенно увеличить энергию обсуждаемого состояния ядра углерода без заметного уменьшения количества углерода, производимого в звездах. Кроме того, если мы начнем менять константы природы, найдется много других состояний ядра углерода и других ядер, которые позволят осуществить альтернативный синтез элементов тяжелее гелия. У нас нет разумных способов оценить, сколь мала вероятность того, что константы природы должны принимать значения, приемлемые для существования разумной жизни.
Мы не знаем, нужен или нет антропный принцип для объяснения значений энергий ядерных состояний, но в одном случае этот принцип кажется просто основанным на здравом смысле. Возможно, существуют различные логически допустимые вселенные, причем каждая со своим набором фундаментальных законов. Если это так, то несомненно существует множество вселенных, законы и история эволюции которых делают их неприемлемыми для разумной жизни.
Но всякий ученый, который спрашивает, почему мир такой, какой он есть, должен жить в одной из тех вселенных, где разумная жизнь могла возникнуть.
Слабым местом такой интерпретации антропного принципа является неясность понятия множественности вселенных. Одна из очень простых возможностей, предложенная Хойлом, заключается в том, что константы природы меняются от места к месту, так что Вселенная разделена на некие субвселенные с разными законами в них. Похожая интерпретация множественности вселенных возникает и в том случае, если мы допустим, что те числа, которые мы называем константами природы, были разными в разные эпохи эволюции Вселенной. Кроме того, много обсуждалась более революционная возможность, что наша и другие логически возможные вселенные с другими окончательными законами каким-то образом отщепляются от большей Мегавселенной. Например, при недавних попытках применить квантовую механику к гравитации было замечено, что хотя обычное пустое пространство выглядит спокойным и не имеющим никаких свойств, как поверхность океана, если смотреть на нее с большой высоты, то при более внимательном рассмотрении пространство кишит квантовыми флуктуациями, так что могут открыться «кротовые норы», соединяющие одни части Вселенной с другими частями, весьма удаленными в пространстве и во времени. В 1987 г., следуя идеям более ранней работы Стивена Хокинга, Джеймса Хартля и других, Сидни Коулмен из Гарварда показал, что открывающиеся и закрывающиеся кротовые норы эквивалентны изменению различных констант, входящих в уравнения для разных полей. Как и в случае интерпретации квантовой механики с помощью идеи о множественности вселенных, волновая функция Вселенной разделяется на огромное количество слагаемых, каждое из которых соответствует разным значениям «констант» природы, принимаемых с разной вероятностью. Какую бы теорию этого типа не рассматривать, совершенно ясно, что мы обнаружим себя в той области пространства, или в той эпохе космической истории, или в том слагаемом общей волновой функции, в которых константы природы случайно приняли благоприятные для существования разумной жизни значения.
Конечно, физики продолжают попытки объяснить значения природных констант без обращения к антропному принципу. Мое собственное мнение заключается в том, что рано или поздно мы обнаружим, что все константы природы (возможно, за исключением одной) фиксируются теми или иными принципами симметрии, а существование каких-то форм жизни совершенно не требует особой тонкой настройки законов природы. Единственная константа природы, которую, может быть, придется объяснять с помощью какого-то подобия антропного принципа, это космологическая постоянная .
Первоначально космологическая постоянная возникла в физической теории при первой попытке Эйнштейна применить только что созданную общую теорию относительности ко Вселенной в целом. В этой работе Эйнштейн предположил, как это было в те годы принято, что Вселенная статична, но вскоре обнаружил, что уравнения тяготения в первоначальной форме, примененные для описания Вселенной в целом, не имеют статических решений. (Этот вывод, на самом деле, не является спецификой для общей теории относительности. В ньютоновской теории тяготения мы также можем получить решения, описывающие галактики, налетающие друг на друга под влиянием взаимного притяжения. Мы можем найти и решения, описывающие разлет галактик в результате какого-то начального взрыва.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84