ТВОРЧЕСТВО

ПОЗНАНИЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

Все здесь, собственно, есть.
В.С. Только здесь постоянно во времени.
С.Ф. Дальше мы по плану должны показать сам внутренний канал, области, близкие к черной дыре. Если в классических микроквазарах мы видим область ускорения струй, как говорят, голую черную дыру и аккреционный диск вокруг нее, то здесь все покрыто истекающей оболочкой (ветром). Энергетика объекта огромна, она существенно больше, чем энергетика или светимость самых ярких рентгеновских источников нашей Галактики, других черных дыр, классических, типа Лебедь Х-1, Геркулес Х-1. Но все это закрыто истекающим ветром, здесь показан ветер. В канале распространяется быстрая плазма, сам канал - это дыра в медленном ветре. А медленный ветер, это «всего-навсего» тысяча километров в секунду.
В.С. Он более плотный поэтому.
С.Ф. Да. Теперь о взаимодействии этой быстрой плазмы и медленного ветра. Стенки канала должны определенным образом жить, там возможны неустойчивости типа волн на море, когда дует ветер. Стенки канала - это динамическое образование: в плотном и медленном ветре существует канал, в котором движется быстрый и разреженный ветер. На стенках канала появляются волнообразные неоднородности, возникают очень мощные ударные волны, которые движутся в центр, к оси, они же схлопываются в центре, и таким образом формируется струя SS433. То есть механизм ускорения здесь гидродинамический, за счет светового давления.
В.С. За счет светового давления, скорее, чем гидродинамического. Гидродинамической является коллимация, то есть сужение этих струй, схлопывание.
С.Ф. Да, это точнее. Но теперь уже надо переходить к ультраярким рентгеновским источникам.
В.С. Которые, возможно, связаны генетически с теми объектами, о которых мы говорили.
С.Ф. На следующей картинке опять же SS433. Это наша работа. Мы с Татьяной Ирсмамбетовой изучили 2000 наблюдений. Там, на самом деле, много работаешь, получаешь мало (в смысле результатов). Пришли к выводу, как выглядит сама центральная часть, область, окутывающая эти струи. Иногда этот объект впадает в активное состояние, а у него такое бывает. Это аккреционный диск, справа - активные картинки, слева - пассивные. Сверху, он к нам наклонен максимально в своей прецессии, а снизу так называемая ориентация «edge-on», т.е. когда мы наблюдаем в плоскости диска. Там формируются колонны (коконы) очень горячего газа, которые в активном состоянии просто увеличиваются в размере. И они, в отличие от нас, наблюдателей, видят то, что там внутри, в этом канале, и переизлучают внутреннее излучение. На основе примерно таких представлений было предсказано, что мы увидели бы, если смогли заглянуть в этот канал. Но мы, к счастью, не можем.
Почему к счастью? Потому что объект к нам развернут так, что мы наблюдаем затмения в двойной системе, мы его изучаем очень эффективно. А потом, это было бы очень ярко. Так вот, мы бы увидели рентгеновский источник чудовищной яркости, это эффект прожектора, потому что кванты света, распространяясь, все равно так или иначе выходят наверх по каналу. На самом деле лампочка в прожекторе не такая яркая, как кажется, когда на нас светят. То есть и в прожекторе, и в SS433 формируется коллимированное излучение. На этой идее было предсказано, что в других галактиках…
А.Г. Должны находить такие источники, то есть повернутые к нам, собственно, этой исходящей…
С.Ф. Именно так. И таких объектов как SS433 в нашей Галактике, примерно один. Да и расчеты показывают, что это очень короткая стадия - всего 10 тысяч лет. И в других галактиках, соответственно, на галактику по одному, один - это значит, конечно, три, или два, или, может быть, ни одного в данный момент, но когда мы наблюдаем много галактик, у нас есть шанс увидеть объекты, которые как раз, как говорится, «face-on» - развернуты плашмя.
А.Г. Во-первых, активны, во-вторых, смотрят на нас.
С.Ф. Совершенно так. Во-первых, там такой объект есть, во-вторых, он определенным образом ориентирован. Это ультраяркие рентгеновские источники, которые открыты - осознаны, точнее, - два года назад.
В.С. Впервые они были обнаружены, конечно, давно, в 89-м году еще. Так сказать, описаны. Но осознаны 2-3 года назад, наверное.
С.Ф. На следующих картинках будет о них рассказ - об ультраярких рентгеновских источниках. Это фотография в рентгеновских лучах со спутника «POSAT» галактики М-31, знаменитой туманности Андромеды. Это галактика нашей Местной Группы. Местная Группа галактик - это наша Галактика, М33, вот та картинка, что до этого была, М31, плюс несколько десятков карликовых галактик. В рентгеновских лучах она выглядит, может, не так красиво, как в оптике. Объектов типа ультраярких рентгеновских источников, здесь нет ни одного. Один такой объект был бы ярче, чем вся эта галактика. Конечно, открытие таких источников в других галактиках заинтересовало и заинтриговало.
В.С. Здесь есть яркое сгущение. Оно такое же, но находится где-то на краю галактики. Это яркий источник.
А.Г. То есть, если мы в рентгеновском диапазоне видим у галактики, по сути дела, два центра, то значит, это есть сверхяркие рентгеновские источники.
С.Ф. На самом деле ультраяркие рентгеновские источники должны появляться и в центрах галактик. Но там трудно доказать, что это не активное ядро. Потому что некоторые активные ядра галактик - квазары, они же имеют почти такую же светимость. Поэтому не помещалось в голове, чтобы какой-то микроквазар светил с такой чудовищной мощностью.
В.С. Просто есть малоактивные квазары, лайнеры так называемые, у которых светимость как раз такая, 10 в 40-й, 10 в 42-й эргов в секунду.
С.Ф. Вот это уже наши результаты из галактики Holmberg-2, есть такой ультраяркий источник. Это карликовая галактика. А красным здесь показана только небольшая область этой карликовой галактики. То есть сама галактика раз в 20 больше, чем красная область, которая была сфотографирована в фильтре линии H-альфа, это линия водорода. Рядом же есть огромная, гигантская галактика М81, которая существенно больше карликовой галактики. Так вот, эта штучка, которая в центре крестиком помечена, в рентгеновском диапазоне излучает примерно столько же, сколько вся гигантская галактика М81. Светимость для астрономов раньше была невероятная. Мы можем назвать цифру 10 в 40-й степени эргов за секунду. Это примерно в 100 миллионов раз ярче, чем полная светимость Солнца - только в рентгене.
Здесь на картинке результаты, которые мы получили, когда провели панорамную спектроскопию на так называемом мультизрачковом (MPFS) фиберном спектрографе, на 6-метровом телескопе БТА. Это прекрасный спектрограф, создатель его Виктор Афанасьев, и идея там замечательная: матрица из 15 на 15 микрообъективов. Они ставятся в фокальную плоскость телескопа, и каждый микрообъектов формирует изображение.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57