ТВОРЧЕСТВО

ПОЗНАНИЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

Полностью задержать поток нейтрино — особой элементарной частицы, возникающей при бетараспаде атомных ядер или нестабильных элементарных частиц вроде пи-мезонов — можно, лишь имея свинцовую «пластинку» толщиной около 10 триллионов километров! Звуковые волны на этой шкале следует поместить не то чтобы посередине, но во всяком случае между рентгеновскими лучами и потоками нейтрино. Их широкое использование для активной локации основано, с одной стороны, на способности проходить через самые различные вещества, а с другой — отражаться от поверхностей, являющихся границами двух сред.
Благодаря этому дельфины могут получать информацию не только об обращенной к ним стороне лоцируемых объектов, но и о противоположной, не видимой глазом стороне, а заодно и о внутренней структуре этих объектов. Животным не стоит особого труда различать внешне одинаковые сплошные объекты от таких же, но имеющих внутри полости. А обычные купальные костюмы, в которых спускаются в бассейн к дельфинам тренеры, для акустических волн достаточно прозрачны.
Боюсь, что дельфины их даже не замечают. Пловцы кажутся им одетыми в костюм голого короля. Зато своими локационными посылками они не хуже рентгеновского аппарата просвечивают наши легкие и способны без дополнительных приспособлений следить за работой человеческого сердца. Хорошая проникающая способность звуковых волн позволяет зубатым китообразным обходиться без зрения. Ни ночной мрак, ни мутная вода для эхолокатора не помеха. Частицы грязи и ила, поднятые со дна, не являются для звуковых волн преградой. Их звукопроводность близка к звукопроводности воды. Другое дело, если в воде взвешено большое количество крохотных пузырьков воздуха. Они способны начисто поглотить звуковые волны. Вот почему дельфины, отличные пловцы, в совершенстве владеющие своим телом, избегают подплывать близко к прибрежным скалам, о которые морской прибой одну за другой разбивает набегающие волны, покрывая их хлопьями белой пены.
Прозрачность для звуковых волн различных материалов может явиться серьезным осложнением для эффективной локации, особенно если прозрачность объекта близка к прозрачности воды. В этом случае на границе двух сред вода — лоцируемый объект отражение звуковых волн будет незначительным и объект окажется невидимым. Поэтому дельфин, особенно в условиях, когда локация затруднена наличием акустических помех, может не заметить рыбацкие сети и иные аналогичные преграды.
Тело рыб хорошо проводит звуковые волны и дает незначительное эхо. Расчеты позволяют предположить, что живую ставридку, длиной в 12—15 см, если она повернута боком к дельфину, животные способны обнаружить лишь за 12—15 м.
Мертвая рыба «видна» хуже. С хвоста дельфин обнаруживает ее за 3,4 м, с головы за 3,8, а сбоку за 9—10 м. Живая рыба более заметна, так как ее плавательный пузырь наполнен воздухом. Он лучше всего «виден» дельфину, хотя и находится внутри. Эксперименты по обнаружению живой рыбы малопоказательны. Ее не заставишь позировать дельфину в строго заданном месте. Ученые не знают, как дельфины находят рыбьи стаи. Здесь опять пришлось прибегнуть к расчетам. Они показали, что если локационный импульс упирается в тела четырех тысяч ставридок, то животные должны заметить стаю никак не меньше, чем за 100 м, но вряд ли обнаружат ее дальше чем за полкилометра.
По тем же расчетам, дельфины могут находить друг друга с помощью эхолокатора за 100—130 м. При этом им сильно помогают наполненные воздухом легкие, так как остальные части тела дают гораздо менее интенсивное эхо. Возможно, друг друга дельфины «видят», как на рентгенограмме: на фоне общих очертаний слабо просвечивают контуры костного скелета, сердце, печень, другие органы, а в центре — яркое пятно легких.
В первые годы исследования дельфинов опыты проводили в мутной воде, ночью или в затемненном бассейне, чтобы зрение не могло помочь животным решать локационные задачи. Однако работать в таких условиях нелегко. Позднее объекты, предназначенные для распознавания, догадались отгораживать матерчатым экраном. Животные отнеслись к нововведению достаточно равнодушно. Экран не мешал работе эхолокатора.
В воде хлопчатобумажная ткань так же прозрачна для звуковых волн, как оконное стекло для солнечных лучей. Эксперименты, проведенные в разных лабораториях мира, подтвердили, что эхолокатор дельфинов работает, как рентгеновский аппарат. Животные легко отличали бутылку с водой от бутылки, наполненной воздухом. Из нескольких опущенных в бассейн бутылок дельфины без ошибки находили ту, где остался пузырь воздуха.
Металл для звуковых волн более прозрачен, чем для рентгеновских лучей. За латунной пластиной помещали вторую, меньших размеров, так, чтобы спереди она не была видна. Дельфинам не составляло труда ее обнаружить. Их не могли смутить никакие ухищрения экспериментаторов. Даже когда ученые для надежности прятали пластины в фанерный ящик, животные без труда определяли, одна там пластина или две.
Сравнивая органы чувств дельфина и человека, невольно впадаешь в уныние. Ужасно обидно, что мы лишены такого универсального приспособления, как эхолокатор. Как он пригодился бы в познании окружающего мира! К сожалению, у медали есть и оборотная сторона. Вряд ли кому-нибудь доставило бы удовольствие постоянно заниматься изучением скелета своих близких и заполненностью их желудочно-кишечного тракта. Впрочем, эстетические критерии весьма изменчивы. Не исключено, что при наличии эхолокатора мы пользовались бы иными, чем сейчас, критериями женской красоты. Вместо цвета глаз, длины ресниц и грациозности стана обращали бы внимание на какие-нибудь костные выросты черепа, замысловатый узор ребер или особенности лопаток. Возможно, дельфины так и поступают при выборе подруг. Им не помешало бы иметь представление об объеме легких своих избранниц. Это один из показателей приспособленности млекопитающих к жизни в водной среде.
От кончика носа до кончика хвоста
Наш глазомер нередко подводит нас. Большая часть человечества ему не доверяет, и там, где это возможно, мы подкрепляем оценку «на глаз» результатами измерений. Животные, делая оценки на глазок, добиваются лучших результатов.
У эхолокационного устройства дельфина хороший «глазомер».
Уже давно было замечено, что афалины и белобочки отличают мелких рыб от рыб в два раза крупнее с расстояния в 1—3 м.
Изящных дельфинов-белобочек попытались научить определять размер пенопластовых пластин. После длительной подготовки животные в конце концов поняли, чего от них хотят, и тут выяснилось, что для дельфинов совсем не безразлична форма сравниваемых пластин. Квадратные пластины различались с большой точностью.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56