ТВОРЧЕСТВО

ПОЗНАНИЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 


То, что на первый взгляд кажется очень сложным или бессмысленным, при расшифровке “кода” может оказаться проявлением довольно простых математических соотношений. Исследуя природу, физик нередко сталкивается с такими вещами, которые сначала кажутся ему чрезмерно сложными и даже случайными. Но в дальнейшем благодаря использованию надлежащего математического аппарата сложное явление может свестись к поразительно простой математике.
Лучший пример тому – история исследования движений планет Солнечной системы. То, что планеты движутся в небе сравнительно упорядоченно, известно каждому, кто хотя бы мельком интересовался астрономией. Однако при более тщательном изучении выясняется, что движения отдельных планет заметно различаются. Например, Марс, обычно движущийся на фойе неподвижных звезд с востока на запад, иногда поворачивает и некоторое время движется вспять – с запада на восток. Кроме того, внешние планеты движутся гораздо медленнее внутренних. При еще более детальном анализе обнаруживается множество других тонких особенностей.
Некогда пользовалась всеобщим признанием модель мира, созданная Клавдием Птолемеем (II в.), которая основывалась на предположении, что Земля покоится в центре мироздания, а планеты “прикреплены” к жестким концентрическим сферам, вращающимся с различными скоростями. Совершенствование методов наблюдения выявило более точные детали движения, для учета которых к первоначальным сферам птолемеевой системы пришлось добавить дополнительные, меньших размеров, вращающиеся вместе с большими сферами так, чтобы сочетание двух или большего числа вращении воспроизводило наблюдаемые движения планет. К тому времени, когда Коперник открыл (XVI в.) истинное строение Солнечной системы, модель Птолемея стала чрезвычайно запутанной и сложной.
Научная революция, вызванная работами Галилея и Ньютона – классический пример того, как невообразимое нагромождение фактов обретает изящную простоту при использовании более адекватной математической модели. Основное достижение Ньютона состояло в рассмотрении планет как движущихся в пространстве материальных тел, которые подчиняются физическим законам движения и закону всемирного тяготения, открытым самим Ньютоном. Благодаря этому Ньютону удалось описать размеры и форму планетных орбит, а также периоды обращения по ним планет. Результаты расчетов хорошо согласовались с данными наблюдений. А самое главное заключается в том, что и законы движения Ньютона, и его закон всемирного тяготения даже по меркам средней школы математически очень просты. Но в совокупности они дали описание богатого и сложного разнообразия движений.
Приведенный пример иллюстрирует еще одну важную особенность физического мира. Меня часто спрашивают, почему мир так сложен, если законы физики столь просты. Ответ следует из правильного понимания того, что мы считаем физическим законом. Когда физик говорит о законе, он имеет в виду некоторое ограничение на поведение определенного класса систем. Например, простой закон гласит: все брошенные бейсбольные мячи описывают параболические траектории. Этот закон можно проверить, наблюдая полеты большого числа бейсбольных мячей. Но закон не утверждает, что все траектории одинаковы. Если бы все мячи летели по одинаковым траекториям, то бейсбол оказался бы скучной игрой. Одни параболы плоские и стелятся низко, другие – крутые и взмывают высоко. И хотя все эти траектории принадлежат к одному и тому же классу кривых – к параболам, существует бесконечное разнообразие форм параболических кривых, так что есть из чего выбрать.
Что же определяет конкретную параболическую траекторию, по которой летит данный бейсбольный мяч? Именно в выборе траектории и проявляется искусство бейсболиста, так как ее форма зависит от того, с какой скоростью и под каким углом к горизонту брошен мяч. Эти два дополнительных параметра, называемые “начальными условиями”, и следует задать для однозначного выбора траектории.
Физический закон оказался бы бесполезным, если бы был настолько жестким, что допускал единственный вариант поведения. Это был бы не истинный закон, а всего лишь описание мира. Все богатство и сложность явлений реального мира может основываться на простых законах, поскольку существует бесконечное множество начальных условий, создающих разнообразие. Физические законы требуют, чтобы орбиты всех планет Солнечной системы были эллиптическими, но точная их форма и отношение длин большой и малой полуосей каждого эллипса из этих законов не следуют. Они определяются начальными условиями, которые нам неизвестны, так как зависят в первую очередь от условий формирования Солнечной системы. Те же законы описывают гиперболические траектории комет и даже сложные траектории космических кораблей. Таким образом, открытые Ньютоном простые математические законы служат основой поистине множества сложных явлений.
Красота как путеводная нить к истине
Красота – понятие туманное, однако нет сомнений в том, что именно она служит источником вдохновения ученых. В некоторых случаях, когда дальнейший путь не ясен, именно математическая красота и изящество ведут ученых к истине. Физик интуитивно чувствует, что природа предпочитает красивые “решения” некрасивым. До сих пор это убеждение, несмотря на его субъективизм, служило надежным и могущественным спутником физиков. Однажды в беседе с Эйнштейном Гейзенберг заметил:
Если природа приводит нас к математическим выражениям необычайно простым и красивым... которые ранее не встречались, то мы невольно воспринимали их как “истинные” и считаем, что они открывают то или иное свойство природы.
Затем Гейзенберг пустился в рассуждения о “почти пугающей простоте и цельности соотношений, которые природа внезапно открывает перед нами”, – эта тема волновала многих его современников. Поль Дирак, пойдя еще дальше, провозгласил: “Красота уравнений важнее, чем их согласие с экспериментом”. Дирак имел в виду, что игра творческого воображения может привести к созданию теории, столь привлекательной, что физики отринут всякие сомнения в ее истинности, прежде чем теория будет подвергнута экспериментальной проверке, и не отвергнут ее даже столкнувшись с казалось бы, противоречащими ей экспериментальными данными.
Ту же мысль проводит и популяризатор науки Ричард Моррис в своей замечательной книге “Разоблачение Вселенной”:
Между наукой и искусством существует множество параллелей, которые сразу же бросаются в глаза. Подобно художникам, каждый ученый имеет свой неповторимый стиль. Представления ученых о том, какой должна быть хорошая научная теория, удивительно схожи с аналогичными воззрениями представителей искусства.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96