ТВОРЧЕСТВО

ПОЗНАНИЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

«Когда мы дошли до этого пункта, программа начала удивлять нас. Первое время мы проверяли от руки все ее вычисления и могли всегда предсказать, как она будет работать в любой ситуации; но теперь она неожиданно повела себя, как шахматная машина. Программа стала выдавать составные стратегии, используя всевозможные трюки, которым она «научилась», и часто предлагаемые программой подходы оказывались более умными, чем те, которые могли предложить мы сами. Так программа стала учить нас, как действовать, чего мы от нее никак не ожидали. В каком-то смысле программа превзошла нас, ее создателей, не только в механической, но и в «интеллектуальной» части работы».
В июне 1976 года, затратив 1200 часов машинного времени, Хакен и Аппель заявили во всеуслышание, что им удалось проанализировать все 1482 карты и для раскрашивания ни одной из них не требуется более четырех красок. Проблема четырех красок Гатри была наконец решена. Следует особенно подчеркнуть, что решение проблемы четырех красок стало первым математическим доказательством, в котором роль компьютера не сводилась к ускорению вычислений, — компьютер привнес в решение проблемы нечто гораздо большее: его роль была столь значительной, что без компьютера получить доказательство было бы невозможно. Решение проблемы четырех красок с помощью компьютера было выдающимся достижением, но в то же время оно вызвало у математического сообщества чувство тревоги, так как проверка доказательства в традиционном смысле не представлялась возможной.
Прежде, чем опубликовать решение Хакена и Аппеля на страницах «Illinois Journal of Mathematics», редакторам было необходимо подвергнуть его тщательному рецензированию в каком-то не известном ранее смысле. Традиционное рецензирование было невозможно, поэтому было решено ввести программу Хакена и Аппеля в независимый компьютер с тем, чтобы убедиться, что результат останется тем же.
Такое нестандартное рецензирование привело в ярость некоторых математиков, утверждавших, будто компьютерная поверка неадекватна, так как не дает гарантии от внезапного отказа в недрах компьютера, который может стать причиной сбоя в логике. X.П.Ф. Суиннертон-Дайер высказал следующее замечание по поводу компьютерных доказательств: «Когда теорема доказана с помощью компьютера, невозможно изложить доказательство в соответствии с традиционным критерием — так, чтобы достаточно терпеливый читатель смог шаг за шагом повторить доказательство и убедиться в том, что оно верно. Даже если бы кто-нибудь взял на себя труд распечатать все программы и все данные, использованные в доказательстве, нельзя быть уверенным в абсолютно правильной работе компьютера. Кроме того, у любого современного компьютера по каким-то неясным причинам могут быть слабые места как в программном обеспечении, так и в электронном оборудовании, которые могут приводить к сбоям так редко, что остаются необнаруженными на протяжении нескольких лет, и поэтому в работе каждого компьютера могут быть незамеченные ошибки».
До какой-то степени поведение математического сообщества, предпочитавшего избегать компьютеров вместо того, чтобы их использовать, можно рассматривать как своего рода паранойю. Джозеф Келлер как-то заметил, что в его университете (Стэнфорде) математический факультет имел меньше компьютеров, чем любой другой факультет, в том числе факультет французской литературы. Те математики, которые отказались признать работу Хакена и Аппеля, не могли отрицать, что все математики соглашались принимать традиционные доказательства, даже если они сами не проверяли их. В случае доказательства Великой теоремы Ферма, представленного Уайлсом, менее 10 % специалистов по теории чисел полностью понимали его рассуждения, но все 100 % сочли, что доказательство правильное. Те, кто не смог до конца понять все тонкости доказательства, приняли его потому, что доказательство признали другие—те, кто все понял, шаг за шагом проследил весь ход доказательства и проверил каждую деталь.
Еще более ярким примером может служить так называемое доказательство классификации конечных простых групп, состоящее из 500 отдельных работ, написанных более чем сотней математиков. Говорят, что полностью разобрался в этом доказательстве (общим объемом в 15000 страниц) один-единственный человек на свете — скончавшийся в 1992 году Дэниэл Горенстейн. Тем не менее, математическое сообщество в целом могло быть спокойным: каждый фрагмент доказательства был изучен группой специалистов, и каждая строка из 15000 страниц была десятки раз проверена и перепроверена. Что же касается проблемы четырех красок, то с ней дело обстояло иначе: она никем не была и не будет полностью проверена.
За двадцать лет, прошедших с тех пор, как Хакен и Аппель сообщили о доказательстве теоремы о четырех красках, компьютеры неоднократно использовались для решения других, менее известных, но столь же важных проблем. В математике — области, не ведавшей ранее вмешательства столь современной технологии, как компьютеры, — все больше и больше специалистов неохотно осваивали использование кремниевой логики и разделяли мнение Вольфганга Хакена: «Всякий, в любом месте доказательства, может полностью вникнуть в детали и проверить их. То, что компьютер может за несколько часов «просмотреть» столько деталей, сколько человек не сможет просмотреть за всю свою жизнь, не меняет в принципе представление о математическом доказательстве. Меняется не теория, а практика математического доказательства».
Лишь совсем недавно математики наделили компьютеры еще большей властью, используя так называемые генетические алгоритмы. Это компьютерные программы, общая структура которых составлена математиком, но тонкие детали определяются самим компьютером. Некоторые направления, или «линии», в программе обладают способностью мутировать и эволюционировать наподобие индивидуальных генов в органической ДНК. Отправляясь от исходной материнской программы, компьютер может порождать сотни дочерних программ, слегка отличающихся из-за введенных компьютером случайных мутаций. Дочерние программы используются в попытках решения проблемы. Большинство программ бесславно не срабатывают, а та, которой удается дальше других продвинуться к желанному результату, используется в качестве материнской программы, порождающей новые поколение дочерних программ. Выживание наиболее приспособленного интерпретируется как выделение той из дочерних программ, которая позволяет особенно близко подойти к решению проблемы. Математики надеются, что, повторяя этот процесс, программа без вмешательства извне приблизится к решению проблемы. В некоторых случаях такой подход оказался весьма успешным.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88