ТВОРЧЕСТВО

ПОЗНАНИЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 


Наконец в 69-ом году Газарян примерно такого же рода задачу рассмотрел без всякого волновода, а просто в одномерной, случайной единородной среде в неограниченном пространстве. Газарян рассматривал совокупность тонких диэлектрических экранов, которые были случайно расположены вдоль направления распространения волны. Вот такая одномерная, случайная единородная среда, и Газарян в ней тоже получил явление, тоже получил результат, согласно которому коэффициент прохождения становился экспонциально мал с увеличением толщины такой среды.
Эти явления локализации, которые были предсказаны в работах Андерсона, Герценштейна и Васильева, Газяряна, в обстоятельных работах Кляцкина, сделали проблему условий применимости феноменологических представлений о переносе излучения в рассеивающей среде весьма актуальной. Действительно, эти результаты показывали, что в одномерных средах эти феноменологические представления о переносе излучения совершенно не применимы. Хотя до работ Герценштейна и Васильева, Газаряна феноменологические представления без всяких оговорок применялись и к одномерным средам, то есть исследователи не предполагали, что в одномерных-то средах эти феноменологические представления совершенно непригодны. Но как же быть с трехмерными средами, к которым обычно эти феноменологические представления и применяются? Есть ли там какие-нибудь аналоги такого рода явлений локализации? Из работ Герценштейна и Васильева, Газаряна относительно трехмерных сред об этом ничего сказать нельзя было, эти работы ничего относительно трехмерных сред не говорили. В работе Андерсона говорилось относительно трехмерных решёток, но всё-таки эта работа относилась скорее к физике твёрдого тела, а не к распространению волн в рассеивающих средах.
В то время создавалось впечатление, что должно существовать новое физическое явление, удовлетворяющее следующим условиям. С одной стороны, конечно, это явление должно происходить в трехмерной рассеивающей среде, и оно должно быть аналогично явлению локализации в одномерной среде, хотя бы в слабой форме. А с другой стороны, это явление должно было бы примыкать всё-таки к феноменологическим представлениям о переносе излучения. И такое явление, которое впоследствии получило название «слабой локализации в трехмерных рассеивающих средах», действительно было найдено в работах 69-73 годов.
Я хочу попросить ещё раз показать картинку четыре. Поскольку в этом явлении как раз играют существенную роль эти повторные рассеяния излучения на одном и том же рассеивателе. Пожалуйста, подержите эту картинку подольше, пока я не дам отбой, она имеет принципиальное значение.
Я здесь вынужден опять вернуться ненадолго к сформулированному критерию применимости феноменологических представлений о переносе излучения. Там было сказано, что, согласно этим представлениям, нужно выбросить все вот такие петли, которые описывают рассеяние на одном и том же рассеивателе. И было замечено, что всё-таки среди этих петель существуют такие процессы, которые дают заметный вклад в перенос излучения, даже если отдельные частицы в каждой петле случайно пошевелить для рассогласования фаз.
Эти петли имеют следующее строение. Здесь они показаны на верхнем рисунке. Это такие петли, в которых одна волна распространяется от фиксированного рассеивателя в одном направлении и возвращается к этому фиксированному рассеивателю, а другая волна распространяется в обратном направлении. И две такие волны идут от заданного рассеивателя вдоль петли, возвращаются опять к заданному рассеивателю - но идут в разных направлениях. Существенным свойством такого процесса является то, что в нём фазы прямого и обратного каналов рассеяния между собой согласованы. И поэтому такие волны, распространяющиеся в прямом и обратном направлениях, могут проинтерферировать. И таким образом такая петля даёт заметный вклад, но феноменологическими представлениями никак не описывается.
Теперь, собственно говоря, можно поступить следующим образом. Как же эту волну пронаблюдать экспериментально? Этот рассеиватель, эту частицу, на которой происходит повторное рассеяние, её мысленно можно раздвоить, и одну половинку заменить на приёмник, на источник излучения, а другую - на приёмник, и вынести такую раздвоенную частицу источник-приёмник вне среды. Тогда такое явление можно зафиксировать экспериментально, и оказывается, что учёт всех таких явлений даёт весьма большой вклад. Собственно говоря, результат получается такой же, как и согласно феноменологическим представлениям, это добавка к таким феноменологическим представлениям. Стало быть, согласно этому результату, феноменологические представления дают стопроцентную погрешность, то есть совершенно ошибаются. Но всё это происходит в узком конусе направлений рассеяния назад. Этот конус по ширине определяется отношением длины волны к длине свободного пробега. В лабораторных условиях этот конус составляет где-то одну сотую радиана, и, стало быть, он изымает из общего потока рассеянного излучения ничтожно малую долю, и таким образом не мешает применимости феноменологических представлений.
Но это явление, наличие такого конуса когерентного усиления обратного рассеяния, которое было в 69-73 годах теоретически обнаружено, потом экспериментально было открыто в 85 году тремя группами. Одна группа в Соединённых Штатах, в Сиэтле, группа Исимару, группа Лахендайка в Амстердаме и группа Маре в Гренобле. И после того как это явление было открыто, оно вызвало очень большой интерес. Надо сказать, что интерес был не меньше, чем интерес, вызванный работой Андерсона о локализации в решётках. А за эту работу Андерсон стал лауреатом Нобелевской премии, потому что работа эта имела очень большое значение для неупорядоченных веществ с примесями, и при исследовании вопросов проводимости через такие вещества. И тем не менее, эффект когерентного усиления обратного рассеяния вызвал не меньший интерес. И начиная с 85 года, и по настоящее время этот эффект постоянно исследуется разными группами, и прошёл почти через все оптические лаборатории мира. В общем-то эффект этот оказался универсальным, он связан с самыми общими представлениями о переносе излучения, он применим в любом, конечно, диапазоне, и в СВЧ, и для акустических волн - для каких угодно волн и для разных сред.
И в то же время, собственно говоря, наличие такого эффекта когерентного усиления обратного рассеяния с узким конусом, оно и на качественном уровне решило проблему применимости феноменологических представлений о переносе излучения. И эти представления были согласованы с микроскопическими представлениями, даже с явлением локализации излучения в рассеивающих средах.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68