ТВОРЧЕСТВО

ПОЗНАНИЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 


На нём другой - ad infinitum».
Вот такая модульная структура в животном царстве. Надо сказать, Маршак этот отрывок специально подсобрал из разных мест этой поэмы. Мой хороший знакомый Дэвид Мосс из университета Манчестера по моей просьбе изучил, как Свифт это публиковал, и оказалось - в английском оригинале немножко более смазано сказано, а здесь у Маршака - очень здорово.
А.О. Ну, тогда попросим следующую иллюстрацию. Вот другая концепция, тоже пришедшая из Франции, это концепция псевдоциклов. Концепция псевдоциклической эволюции, которая была предложена в 30-е годы французским биологом Госаном. Он обратил внимание, что у многих организмов, не только у растений, но, например, у колониальных животных, наблюдается удивительное сходство частей и целого, и рассмотрел это как общую тенденцию эволюции. Например, вот как на этой иллюстрации. Слева мы видим соцветие простой зонтик, у примулы, например, справа мы видим соцветие сложный зонтик, типичный для зонтичных - морковки или, например, тмина. Здесь видим, что структура повторяется на следующем уровне. Но интересно, что эволюция идёт в направлении, во-первых, упрощения этих частей. То есть, эти простые зонтички в сложном зонтике в процессе эволюции редуцируются до одного цветка. А с другой стороны, вся побеговая система превращается в зонтик следующего порядка. И вот Татьяна Валентиновна Кузнецова, выдающийся морфолог, работавшая на кафедре высших растений в Московском Университете, и, к сожалению, безвременно оставившая нас, специально занималась псевдоциклами у соцветий зонтичных. Она проследила до 5 псевдоциклов у разных зонтичных. То есть, вот пример самоподобия, а заодно и фрактальных свойств (таких как автомодельная симметрия) у соцветий. Это как раз та биологическая концепция, которая просто напрашивается на математизацию.
Д.С. Фракталы вошли в физику, отталкиваясь от свойства самоподобия. Хоусдорф понятие этой самой размерности в 18-м году сформулировал, но это всё-таки была трудная математическая работа. А было такое событие, о котором всегда принято рассказывать. Замечательный гидромеханик Ричардсон во время мировой войны хотел сделать что-то хорошее. Его послали изучить, какова длинна береговой линии Англии. Понятное дело, нужно как-то страну оборонять, нападения с моря бывают. Вот он поизучал-поизучал вопрос и пришёл к выводу, что бесконечная длина у береговой линии. Это даже лучше видно на береговой линии Норвегии. У нас есть рисуночек с длиной береговой линии Норвегии из известной книжки Федера о фракталах. Видно, что вопрос о том, какова длина той кривой, которая изображена на рисунке, зависит от того, в каком масштабе мы её изучаем. Выбираем квадратики побольше, и, игнорируя тонкую структуру, длина береговой линии одна. Начинаем отслеживать все эти фиорды, всю эту мелочь - длина береговой линии начинает расти. И вот в зависимости от степени разрешения, она растёт больше, больше… И никакого определённого числа нет.
А.Г. То есть это всё-таки конечная величина?
Д.С. Конечно, если вы, совсем, буквально микроскопическими масштабами оперируете, встаёт вопрос, как движется береговая линия во время приливов и отливов. Вопрос теряет просто смысл. Но есть диапазон масштабов, где действительно наблюдается степенная зависимость длины линии береговой от степени разрешения. Да, это действительно очень похоже на то, что получается для растений. Даже в книжках по фрактальной геометрии есть картинки, которые называют листьями папортника. Они возникают, когда люди хотят проиллюстрировать, что такое фрактал. А с другой стороны, люди, которые хотят объяснить, как устроена архитектура растений, буквально такие же картинки рисуют безотносительно ко всяким фракталам. Наверное, стоит показать эти рисунки.
Это картинка более или менее произвольная из того же Федера. Такого характера растения вполне могут существовать.
А.О. Водоросли, конечно.
Д.С. А на самом деле, эта картинка, иллюстрирующая, как происходят построения кластеров химических соединений. А сейчас будут картинки из ботаники. Вот, это очень изрезанная картинка, видны ярусы, как строится организация…
А.О. Самое главное для меня - это впечатляющее самоподобие, то есть сходство части и целого. В чём может быть тут ещё интерес? В традиционной морфологии растений и животных рассматриваются два типа сходства между частями организма - гомология и аналогия. Скажем, рука человека гомологична крылу птицы, потому что эти конечности имеют общее происхождение, хотя и разные функции. Глаз человека аналогичен глазу осьминога. Это значит, что происхождение у них разное, но функция одна. Но в обоих этих примерах всё равно сравниваются именно части. А вот тут, когда мы имеем дело с фрактальными объектами, часть сравнивается с целым. И как раз эти работы дают законное основание для такого рода сравнения. Это несколько нетрадиционно для биологической морфологии.
Д.С. Я впервые об этом узнал от Татьяны Валентиновны Кузнецовой. Она меня пригласила на школу для студентов-биологов кое-что из математики рассказать. Она там блестящий доклад сделала. Я просто тогда был потрясён, потому что всегда думаешь, ну, нарисовали там какие-то красивые картинки математические, а что действительно так бывает в живой природе… Конечно, огромная потеря, что она так рано от нас ушла.
А.О. Как раз, наверное, следующую картинку стоит показать. То, на что вот смотрите, это растение вполне натуральное, смоделированное на основе этих фрактальных подходов. И подобные модели позволяют уже заниматься довольно тонким анализом биологического смысла этой фрактальной организации. То есть, скажем, здесь можно рассмотреть, как листья затеняют друг друга. Или что будет, если верхушку побега отгрызёт какое-нибудь насекомое, как изменится рост. Соответственно, можно моделировать различные стратегии адаптивности, приспособления к условиям среды. То есть эти модели, с одной стороны, красивы и эстетичны, а с другой стороны, приобретают совершенно явный биологический смысл.
Д.С. В таких вопросах очень легко увлечься внешней аналогией. Но на самом деле есть мотивация биологическая, почему фрактальная природа может быть значима. В своё время Галилей обратил внимание на то, что в живой природе должно быть такое ограничение. Представим себе, какие бы мы были, если бы жили на Юпитере. Галилей рассматривает этот вопрос в одной из своих книг. И приходит к выводу, что мы должны были бы быть карликами, потому что объём тела пропорционален кубу размера, а прочность костей пропорциональная квадрату размера. Но не вся правда в этой идее Галилея. На самом деле, если мы организуем такое модульное строение растения и разрешаем ему быть фракталом, то само понятие объёма тела и площади поверхности преобразуются и можно выскочить из этой связки между объёмом и площадью поверхности.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75