ТВОРЧЕСТВО

ПОЗНАНИЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

И при снижении мощности получили не увеличение запаса реактивности на один стержень, а неизвестно какое снижение. Поэтому прогноз изменения запаса оказался ошибочным.
Знали или нет Научный руководитель и Главный конструктор реактора РБМК, что реактор в достаточно большом диапазоне мощности имел положительный мощностной коэффициент реактивности, сказать не берусь. Но что в практике это не учитывалось – точно. Станционный Отдел ядерной безопасности работал под их методическим руководством и, конечно, должен был измерять характеристики в наиболее неблагоприятных областях. Следовательно, Отдел подсказки от научных организаций не получил, а те, что получал, были, мягко говоря, не того качества. Ведь паровой эффект реактивности в 1,29 при действительном в 5 Отдел намерял по их методике.
Создателям реактора было ясно отрицательное влияние большого парового эффекта реактивности на динамические свойства реактора. Вот что пишет в записке следователю Главный конструктор РБМК академик Н.А. Доллежаль:
«В самом начале строительства канальных уран-графитовых реакторов, исходя из уровня знаний того времени (середины 60-х годов), активная зона реактора была спроектирована с использованием урана, обогащённого U–235 в 1,8%. Спустя некоторый срок эксплуатации первого реактора, стала очевидной целесообразность поднятия этого значения до 2 %, что позволило, в частности, в некоторой степени понизить отрицательное влияние парового коэффициента реактивности. Дальнейшее изучение всех параметров, характеризующих работу реактора, привело к выводу о целесообразности повышения обогащения урана до 2,4 %. Такие сборки с активными элементами изготовлены и удовлетворительно проходят представительные испытания на работающих канальных реакторах АЭС.
При создании активной зоны реакторов на этом уровне обогащения урана по всем данным влияние парового коэффициента реактивности локализуется. До этого, т. е. при обогащении урана 2 %, это влияние регулируется постановкой в каналы специальных поглотителей (ДП), что строго и предусматривается в эксплуатационных инструкциях. Отступление от них недопустимо, так как делает реактор «н е у п р а в л я е м ы м» (разрядка моя – А. Д.)
Полагаю, слово «неуправляемым» пояснения не требует. Реактор РБМК-1000 четвёртого блока имел уран 2 % обогащения, ДП в активной зоне не имел, по определению Главного конструктора – неуправляем. Указаний в эксплуатационных инструкциях не было и появиться им неоткуда было – в проектных материалах Главный конструктор сообщить не обеспокоился. В отчёте его НИКИЭТ, озаглавленном «Ядерная безопасность реакторов РБМК вторых очередей. Нейтронно-физические параметры», паровой коэффициент реактивности не превышает 1(3, а мощностной коэффициент отрицательный. Ладно, это расчёты. Жизнь вносит коррективы. Активные зоны реакторов РБМК формировались по расчётам НИКИЭТ. Не указали в проектных материалах. Знали, что в таком виде он неуправляем, и всё же делали.
Именно положительный паровой коэффициент (эффект) реактивности недопустимо большой величины делал положительным мощностной коэффициент реактивности. Чем это плохо?
У критичного реактора мощность удерживается на постоянном уровне. Если теперь каким-то способом (изменение расхода теплоносителя, питательной воды, давления первого контура) внесена положительная реактивность, то мощность начнёт возрастать. В правильно спроектированном реакторе от увеличения мощности вносится отрицательная реактивность (отрицательный мощностной коэффициент), которая скомпенсирует ранее внесённую реактивность, и мощность установится на новом, более высоком уровне. В этом заключается принцип саморегулирования. У реактора РБМК, по крайней мере на малой мощности, мощностной коэффициент оказался положительным. Теперь увеличение мощности реактора вносит дополнительную положительную реактивность, реактор начинает увеличивать мощность с большей скоростью, что вызывает ещё положительную реактивность и создаются условия для разгона реактора. Нельзя говорить, что такой реактор нисколько работать не может. Автоматический регулятор или оператор своими действиями могут удержать реактор от разгона. Но всё это до поры до времени. При достижении избыточной реактивности величины р (доля запаздывающих нейтронов) реактор уже разгоняется на мгновенных нейтронах с очень большой скоростью, и ничто его не может спасти от разрушения. Экзотические исследовательские реакторы в расчёт не принимаются.
Нормативный документ ОПБ-82 так требует проектировать реакторы:
СТАТЬЯ 2.2.2. ОПБ «Как правило, быстрый мощностной коэффициент реактивности не должен быть положительным при любых режимах работы АЭС и любых состояниях системы отвода тепла от теплоносителя первого контура. Если быстрый мощностной коэффициент реактивности положителен в каких-либо эксплуатационных режимах, в проекте должна быть обеспечена и обоснована безопасность реактора в стационарных, нестационарных и аварийных режимах».
Ну, при АЗ со скоростью действия 18…20 с (чемпион по медленнодействию) даже при нормальной конструкции стержней СУЗ говорить об обосновании безопасности при положительном мощностном коэффициенте не приходится.
Аналогично и требование другого нормативного документа – ПБЯ-04-74.
Можно констатировать. Имеем свидетельство Главного конструктора о знании, как делать безопасный реактор. Имеем требование нормативных документов. Сделано наоборот.
В 00 часов 43 минуты вскоре после провала мощности реактора начальник смены блока А. Акимов заблокировал защиту реактора по останову двух ТГ. Проще всего было бы сказать, что согласно Регламенту Указанная защита выводится при мощности менее 100 МВт электрических, у нас было 40 МВт. И, следовательно, никакого нарушения нет. Но вышло оно, это нарушение, аж на международную арену, и потому надо пояснить. Эта защита при остановках блока чаще всего выводилась заранее, поскольку работа реактора требовалась ещё некоторое время для выполнения каких-либо проверок. Если взять Регламент, то там тоже написано, что мощность реактора снижается АР и затем кнопкой АЗ-5 приводится в действие АЗ для глушения реактора. Это обычное и, главное, нормальное явление. Назначение этой защиты – предотвратить резкий рост давления в первом контуре, поскольку при остановке турбин они перестают потреблять пар. А при малой мощности турбины она и пару потребляет мало, и при остановке не от чего защищать реактор.
Сколько мне пришлось писать по этой защите – даже и не знаю. И пусть бы она выведена была без нарушения требований эксплуатационных документов. Но вот вопрос: при введённой защите взрыва бы не было?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89