ТВОРЧЕСТВО

ПОЗНАНИЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 



Коэффицент Холла может быть положительным и отрицательным
и даже менять знак с изменением температуры. Для большинства
металлов наблюдается почти полная независимость коэффициента
Холла от температуры. Резко аномальным эффектом Холла обладает
висмут, мышьяк и сурьма. В ферромагнетиках наблюдается особый,
ферромагнитный эффект Холла. Коэффициент Холла достигает мак-
симума в точкке Кюри, а затем снижается.
А.с. 272 426: Способ измерения магнитной индукции в об-
разце из магнитотвердого материала путем помещения испытуемого
образца во внешнее магнитное поле, отличающийся тем, что с
целью повышения точности и сокращении времени измерения через
поперечное сечение образца пропускают электрический ток и из-
меряют Э.Д.С. Холла на его основных гранях, по которой судят
об искомой величине.
А.с. 2 836 399: Устройство для измерения среднего индика-
торного давления в цилиндрах поршневых машин, содержащее дат-
чик, преобразующий давление и электрический сигнал, датчик по-
ложения поршня, усилитель, электронный вычислительный блок и
указатель, отличающийся тем, что сцелью упрощения конструкции,
в качестве датчика положения поршня и множительного элемента
вычислительного блока, использован датчик Холла, магнитная
система которого жестко связана с коленчатым валом двигателя,
а активный элемент соединен через усилитель с выходом датчика
давления, при этом выход датчика Холла через интегратор подк-
люченк указателю.
10.1.2. В направлении перпендикулярном к направлению маг-
нитногополя и направлению тока возникает температурный гради-
ент (разность температур) эффект Эттингсгаузена.
А.с. 182 778: Низкотемпературное устройство на основе
эффектов Пельтье и Эттингкгаузена, отличающийся тем, что с
целью одновременного использования термоэлектрической батареи
как генератора холода и как источника магнитного поля для ох-
ладителя Эттингсгаузена, термобатарея выполнена ввиде цилинд-
рического соленоида.
10.1.3. Изменяется сопротивление проводника, что эквива-
лентно возникновению добавочной разности потенциалов вдоль
направления электрического тока. Для обычных металлов это из-
менение мало - порядка 0,1% в поле 20 кв, однако для висмута и
полупроводников величина изменения может достигать 200% (в по-
лях 80 кв.).
А.с. 163 508: Универсальный гальваномагнитный датчик, со-
держащий плоские токовые и холловские электроды точечность
контакта которых обеспечивает перемычки в теле датчика, отли-
чающийся тем, что с целью уменьшения эффекта закорачивания
холловского напряжения токовыми электродами использования од-
ного и того же единого гальваномагнитного датчика как датчика
э.д.с. Холла или как датчика магнитосопротивления, или как ги-
ратора, токовые электроды расположены вдоль эквипотенциальных
линий поля Холла или под острым углом к ним, например по реб-
рам плоского датчика, а для перехода из одного используемого
эффекта к другому применено коммутирующее устройство и регули-
руемый источник питания.
10.1.4. Термомагнитные явления - совокупность явлений,
возникающих под действием магнитного поля в проводниках, внут-
ри которых имеется тепловой поток.
при поперечном замагничивании проводника возникает следу-
ющие термомагнитные явления:

10.2.1. В направлении перпендикулярном градиенту темпера-
тур и направлению магнитного поля возникает градиент
температур (эффект Риге-Ледюка).
10.2.3. При продольном намагничивании образца изменяется
сопротивление, термо - э.д.с., теплопроводность (появляется
тепловой поток).
А.с. 187 859: Устройство для измерения э.д.с. поперечного
эффекта Кернота-Эттингсгаузена в полупроводниковых материалах,
содержащее нагреватель, холодильник и термопары-зонды, отлича-
ющиеся тем, что с целью исключения неизотермической части э.д.
с. Нернота-Эттингсгаузена, уменьшения тепловых потерь и исклю-
чения цикуляционных токов на контакте полупроводникизмеритель-
ные зонды, термопары-зонды подведены к поверхности исследуемо-
го образца через массивные металлические блоки холодильника
инагревателя, находяшиеся в хорошем тепловом контакте с образ-
цом, электрически изолированные от последнего.
В этом авторском свидетельстве физический эффект не при-
менен для решения задач. Оно просто демонстрирует, что исполь-
зование эффектов требует как их знания, так и решения сложных
электрических задач.
10.2.4. Электронный фототермомагнитный эффект - появление
э.д.с. в однородном проводнике (полупроводнике или металле),
помещенном в магнитном поле, обусловленное поглощением элект-
ромагнитного получения свободными носителями заряда. Магнитное
поле должно быть перпендикулярно потоку излучения. Этот эффект
применяется в высокочувствительных 10 в минус тринадцатой сте-
пени вт, сек1/2 приемниках длинноволнового инфракрасного излу-
чения. Постоянная времени эффекта - 10 в минус седьмой степени
сек.

Л И Т Е Р А Т У Р А
к 10.1 "Радио", N'9, 1964, стр.53, А.с.249473, 255996;
к 10.2 А.с.476463.
11.ЭЛЕКТРИЧЕСКИЕ РАЗРЯДЫ В ГАЗАХ.
11.1 В обычных услх любой газ,буть то воздух или пары се-
ребра, является изолятором. Для того,чтобы под действием
электрического полявозник ток, требуется каким-то способом ио-
низовать молекулы газа. Внешние проявления и характеристики
разрядов в газе чрезвычайно разнообразны,что объясняется широ-
ким диапазоном параметров и элементарных процессов,определяю-
щих прохождения тока через газ.Кпервым относятся состав и дав-
ление газа, геометрическая конфигурация разрядного
пространства, частота внешнего электрического поля,сила тока и
т.п.,ко вторым - ионизация и возбуждение атомов и молекул га-
за,рекомендация удары второго рода,упругое рассеяние носителей
заряда,различные виды эмиссии электронов. Такое многообразие
управляемых факторов создает предпосылки для весьма широкого
пименения газовых разрядов.

11.1.1.П о т е н ц и а л о м и о н и з а ц и и называет-
ся энергия, необходимая для отрыва электрона от атома или ио-
на. Для нейтронных невозбужденных атомов величина этой энергии
изменяется от 4 ( ) до 24 (Не) электрон-вольт. В случае моле-
кул и радикалов энергия разрывов связей лежит в пределах 0,06+
11,1 э.в.( )

11.1.2. Ф о т о и о н и з а ц и я а т о м о в. Атомы мо-
гут понизироваться при поглащении квантов света, энергия кото-
рых равна потенциалу ионизации атома или превосходит ее.
11.1.3. П о в е р х н о с т н а я и о н и з а ц и я . Ад-
сорбированный атом может покинуть нагретую поверхность как в
атомном так и в ионизованном состоянии.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72