ТВОРЧЕСТВО

ПОЗНАНИЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

Так его коэффицент преломления изменяется с направле-
нием, он преломляется даже при нормальном падении на кристалл.

Так происходит двулучепреломление в одноосных кристаллах.
В случае двуосных кристаллов картина расщепления несколько
сложнее (1-3,6,7,).
Эффект двойного преломления положен Николем в основу
изобретенной им поляризационной призмы. Он использовал разли-
чие показателей преломления обыкновенного и необыкновенного
лучей, создав для одного из них условия полного внутреннего
отражения, после которого этот луч, изменив свое направление,
поглощается зачерненной боковой гранью призмы. Другой луч пол-
ного внутреннего отражения не испытывает и проходит сквозь
призму, а так как это полностью поляризованный луч, то на вы-
ходе призмы получается полностью линейно-поляризованный свет.
16.2. Механо-оптические явления.

Здесь рассматривается ряд эффектов, приводящих к возник-
новению оптической анизотропии под действием механических сил.
16.2.1. Фотоупругость - так называется возникновение в
изотропных прозрачных твердых телах оптической анизотропии и
связанного с ней двойного лучепреломления под действием меха-
нических нагрузок, создающих в твердых телах деформации.

При пропускании луча света через такое , пре, тело возни-
кает два луча и различной поляризации,интерференция между ко-
торыми приводит к образованию интерференционной картины, вид
кот позволяет судить о величинах и распределении напряжений в
теле или же об изменениях структуры вещества. Поскольку опти-
чеспия обусловлена именно нарушениями первоначальной изотроп-
ной структуры вещества, то эффект фотоупругости позволяет ви-
зуализировать как упругие деформации, так и остаточные, а это
значит , что о деформациях и нагрузках можно судить и после
снятия этих нагрузок.

Фотоупругость наблюдается и в кристаллах, т.е. в вещест-
вах , уже обладающие анизотропией свойства. При этом изменяет-
ся характер анизотропии: например, в одноосном кристалле может
возникнуть двойное преломление в направлении его оптической
оси,вдоль которой он первоначально изотропен.

Эффект фотоупругости - один из самых тонких методов изу-
чения структуры и внутренних напряжений в твердых телах (4)
А.С. N.249025: Способ оценки распределения контактных
напряжений по величине деформации пластичной прокладки, распо-
лагаемой в зоне контакта между соприкасающимися поверхностями,
отличающийся тем,что с целью повышения точности,в качестве
пластичной прокладки используют пленку из оптически чувстви-
тельного материала, которую затем просвечивают поляризованным
светом в направлении действия контактных сил и по картине по-
лос судят о распределении контактных напряжений.

А.С. N.226811

Франция,заявка N.2189705

Япония,заявка N.49-16676.

США. патент N.3800594


16.2.2. Э ф ф е к т М а к с в е л л а .

Так называют возникновение
оптической анизотропии (двойного лучепреломления) в потоке
жидкости. Этот эффект обусловлен двумя причинами: преимущест-
венно ориентации частиц жидкости или растворенного в ней ве-
щества (полной ориентации мешает броуновское движение)и их де-
формацией, которые возникают под действием гидродинамических
сил при относительном смещении прилежащих слоев жидкости, т.е.
при наличии градиента скорости по сечению потока.В основном
возникновение градиента скоростей в потоке определяется тормо-
зящим воздействием стенок (например,трубы). Относительная роль
ориентации и деформации частиц различна в различных жидкостях
и зависит от свойств и структуры молекул: в случае длинных
анизотропных частиц и молекул основную роль играет ориентация,
для глобулярных изотропных - больший вклад дает информа-
ция,т.к. ориентация таких частиц в потоке незначительна.По су-
ти дела,эффект Максвелла - это вариант эффекта фотоупругости
для жидкостей. Отсутствие в жидкости напряжений упругой дефор-
мации компенсируется ее "динамизацией" ,приведением ее в дви-
жение,что создает деформацию отдельных молекул.

Величина эффекта Максвелла зависит, в частности от формы
и размеров частиц,что позволяет использовать его для измерения
этих величин. (5)

Практическое применение эффекта в основном лежит, в об-
ласти тонких иследований фиологических объектов,таких,как оп-
ределение размеров ряда вирусов,изучение структуры многих бел-
ковых молекул и др.


16.3. Электрооптические явления.

Так называют явления связанные прохождением света через
среды, помещенные в электрическом поле.

16.3.1. Электрооптический эффект Керра.

Многие изотропные
вещества, помещенные в электрическое поле, приобретают свойс-
тва одноосных кристаллов, т.е. обнаруживают оптическую анизот-
ропию, приводящую к двойному лучепреломлению света, проходяще-
го через вещество перендикулярно направлению поля. При этом
величина двойного лучепреломления пропорциональна квадрату
напряженности поля и ее знак не меняется при изменении направ-
ления поля на обратное. (другие названия эффекта: квадратичный
электрооптический эффект, поперечный эл. опт. эффект).

Величина эффекта зависит от вещества, его температуры и
длины волны света. В газах эффект Керра мал, а в жидкостях его
величина гораздо больше. Аномально сильно он проявляется в
нитробензоле и подобных ему жидкостях.

Наиболее часто указанный эффект реализуется в т.н.электро-
оптических затворах Керра. Прозрачную кювету с электродами для
создания поля, заполненную нитробензолом, помещают между скре-
щенными поляризатором и анализатором таким образом, что нап-
равление поля составляет угол 45 градусов с их главными плос-
костями поляризации. Если поле отсутствует, такое устройство
не прозрачно для света. При наложении поля, линейно поляризо-
ванный свет при прохождении через кювету расцепляется на два
перепендикулярно поляризованных луча, имеющих в пределах кюве-
ты различные скорости распространения. При этом между ними
возникает разность фаз, что приводит к эллиптической поляриза-
ции света, вышедшего из кюветы. При этом часть его проходит
через анализатор. Затвор открыт (6). Высокая скорсть срабаты-
вания такого затвора (10 в минус 11 степени сек.) обусловило
его применением в исследованиях быстропротекающих процессов и
для высокочастотной (до 10 в 9 степени Гц) модуляция оптичес-
ких сигналов. Применение эффекта дает хорошие результаты и в
том случае, когда требуется безинерционное пространственная
модуляция света (отклонение луча, его расщепление и т.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72