ТВОРЧЕСТВО

ПОЗНАНИЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

Некоторые из этих дублетов, называемые правильными дублетами, обнаруживают по мере перехода от одного элемента к другому, определенные закономерности. В частности, разность частот, соответствующая линиям одного дублета, быстро растет с увеличением атомного номера элемента, приблизительно как его четвертая степень. Обращение к релятивистским уравнениям движения вместе с найденными им условиями квантования позволило Зоммерфельду объяснить как причину возникновения этих дублетов, так и указанную выше зависимость разности частот от атомного номера. В частности, расположение дублетов серии Lочень хорошо описывалось полученными им формулами.
Замечательные результаты, полученные Зоммерфельдом и опубликованные в 1916 г., явились полным подтверждением справедливости как квантовых методов, так одновременно и релятивистской динамики и привлекли к квантовой теории всеобщее внимание. Но более глубокий анализ этой теории обнаружил в ней много недостатков. В частности, последовательное применение используемых в этой теории (которая в настоящее время известна как старая квантовая теория) принципов и методов встречает на своем пути определенные трудности принципиального характера. Но даже безотносительно к этим трудностям общего характера теория Зоммерфельда может вызывать возражения более частного порядка.
Прежде всего, тонкая действительная структура оптического и рентгеновского спектров носит более сложный характер, чем это следует из теории Зоммерфельда. Полученная им картина спектральных линий, хотя и более полная, чем у Бора, все же гораздо беднее той, которая наблюдается в действительности. Это оказывается очень серьезной трудностью, ибо теория Зоммерфельда не оставляет места для введения этих дополнительных термов, существование которых неоспоримо доказано экспериментом. Полнота и общность используемых методов не допускают, казалось бы, дальнейшего обобщения теории. Правда, Зоммерфельду удалось учесть эти дополнительные термы, введением некоторого дополнительного квантового числа, названного им внутренним квантовым числом. Однако оно было введено весьма искусственно и никак не следовало из самой теории. Только сделанное позже открытие собственного магнитного момента электрона позволило оправдать и объяснить введение этого нового квантового числа.
Таким образом, теория Зоммерфельда оказалась неспособной дать достаточно полное объяснение тонкой структуры спектральных линий. Но предсказание ее относительно дублетов в оптической и рентгеновской областях спектров, казалось, полностью оправдалось. К сожалению, проведенный позднее тщательный анализ структуры спектров показал, что совпадение не такое уж хорошее. Оказалось, что каждое устойчивое состояние атома характеризуется целой совокупностью квантовых чисел. Если это учесть, то мы приходим к следующему несколько странному выводу: теория Зоммерфельда точно предсказала дублеты серии Бальмера и рентгеновских спектров. Однако действительное положение их не совпадало с тем, которое следовало из теорий. Невозможно было приписать успех теории Зоммерфельда просто счастливой случайности и все же чувствовалось, что в этой теории что-то не так. Лишь теория Дирака, приняв во внимание новые свойства электрона, поставила все на свои места, сохранив все главные результаты теории Зоммерфельда. Таким образом, выяснилось, что направление мысли этого замечательного физика было совершенно правильным. Но в то время, когда он развивал свою теорию, квантовые представления, с одной стороны, и 'наши знания об электроне, с другой, не были еще достаточно полны для того, чтобы позволить ему окончательным образом завершить свое построение.
4. Теория Бора и строение атомов
Главным моментом теории Бора было утверждение, что электроны внутри атома могут находиться только лишь в стационарных состояниях, соответствующих определенным квантованным значениям энергии. Значит, существуют определенные энергетические уровни, на которых как-то располагаются различные электроны атома. Полное число элементов равно, как известно, 92. Атом каждого последующего элемента содержит на один электрон больше, чем атом предыдущего.
Таким образом, по мере возрастания атомного номера структура электронных оболочек соответствующих атомов все более и более усложняется. Знание этой структуры позволяет определить все химические и физические свойства этих элементов. Еще задолго до возникновения квантовых теорий русский химик Менделеев расположил все известные к тому времени элементы в таблицу по возрастающему атомному весу, т е. почти точно в порядке возрастания их атомного номера. При этом он обнаружил определенную периодичность в химических свойствах расположенных таким образом элементов. Иначе говоря, свойства элементов, разделенных в этой таблице некоторыми регулярными интервалами, оказываются во многом подобными.
Однако эта периодичность не совершенно строгая. Так, например, величина периода увеличивается по мере продвижения к концу таблицы Менделеева, а сама периодичность зачастую обнаруживает нерегулярные отклонения. Все это указывает на то, что физическая природа этой периодичности отнюдь не проста. Тем не менее, периодичность свойств существует и настоящая теория атома должна объяснить ее. Чтобы объяснить эти закономерности, теория Бора была дополнена еще одним и, как мы в дальнейшем убедимся, очень важным правилом, по которому на одном энергетическом уровне может находиться лишь ограниченное число электронов, т е. энергетические уровни как бы насыщаются электронами. Это было поистине новое и неожиданное свойство квантовых систем, глубокое содержание которого стало ясно значительно позже.
Пользуясь постулатом о насыщении уровней и опираясь на весьма общий физический принцип, согласно которому устойчивое состояние системы есть состояние с минимальной энергией, можно легко понять природу замеченной ' Менделеевым периодичности свойств различных элементов. В самом деле, если бы не существовало насыщения уровней, то в нормальном стабильном состоянии атома какого либо элемента все электроны находились бы на самом низшем уровне, соответствующем наименьшей энергии. Однако из-за насыщения уровней такая ситуация невозможна.
Когда по мере увеличения атомного номера, мы переходим от одного элемента к другому, новый электрон, который добавляется к структуре атома, обычно занимает место на уровне с наименьшей энергией, который еще не насыщен, или, как часто говорят, на уровне с наименьшей энергией, где еще есть свободное место. Как только низший уровень оказывается заполненным, электроны начинают располагаться на следующем, более высоком, пока его также не заполнят целиком.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72