ТВОРЧЕСТВО

ПОЗНАНИЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 


Это правило отбора, дополненное еще одним аналогичным правилом, нашло замечательное подтверждение при исследовании всех видимых и рентгеновских спектров и значительно облегчило классификацию еще не исследованных спектров. Принцип соответствия оказал неоценимую услугу, показав теоретическое значение этих правил отбора, которые были предложены еще раньше из совершенно других соображений (Рубинович).
Очень трудно было объяснить в квантовой теории явление дисперсии света. Коэффициент преломления данного вещества зависит от частоты света и очень сильно меняется вблизи некоторых критических частот, в точности равных частотам тех спектральных линий, которые может излучать это вещество. Прежние теории довольно хорошо объяснили эти изменения коэффициента преломления, и, таким образом, они давали явлению дисперсии удовлетворительное объяснение.
В частности, в электронной теории считалось, что атомы содержат электрические заряды, гармонически колеблющиеся вблизи положений равновесия (электронные осцилляторы). При этом частоты колебаний различных атомных осцилляторов должны быть равны частотам испускаемых атомом спектральных линий. Изучив, каким образом монохроматическая волна, падая на атом, вызывает вынужденные колебания его осцилляторов и каким образом эти вынужденные колебания внутриатомных вибраторов влияют на распространение падающей волны, электронная теория позволила вычислить коэффициент преломления как функцию частоты, причем формула дисперсии полностью согласовывалась с результатами эксперимента. В этой формуле критические частоты дисперсии равны собственным частотам электронных осцилляторов, т е. частотам спектральных линий данного вещества. Этот вывод совпадал с наблюдаемыми фактами. В теории Бора строгое объяснение дисперсии было гораздо более сложным. Действительно, в атоме Бора механические частоты вращения электронов на своих орбитах не находились в простой связи с оптическими частотами спектральных линий, связанных с переходами, а не с состояниями. Таким образом, теперь было трудно понять, как изменение механического состояния атома под действием падающего света может приводить к явлению дисперсии, где принципиальную роль играют не механические частоты атома, а оптические частоты спектральных линий. Бор и его последователи заметили эту трудность. Появление принципа соответствия позволило Бору найти решение на новом пути. Два ученика Бора, Крамерс и Гейзенберг, сумели получить в 1923 г. квантовую формулу дисперсии, которая не совпадала полностью с классической формулой, но находилась в полном согласии с результатами экспериментов. Впрочем, соображения Крамерса и Гейзенберга не были абсолютно бесспорными. Однако они постоянно руководствовались и вдохновлялись духом принципа соответствия. Как мы уже сказали, полученная таким образом формула не совсем совпадала с классической формулой: она содержала дополнительные члены. Впоследствии Ладенбург показал экспериментально, что этим членам отвечает определенная физическая реальность.
При исследовании формулы дисперсии Гейзенберг убедился, что полезно исключать из теории Бора все не наблюдаемые непосредственно величины, оставляя в ней по мере возможности лишь наблюдаемые величины, например исключить частоты вращения электронов на орбитах, заменив их спектральными частотами, связанными с квантовыми переходами правилом Бора. Эти соображения, очевидно, повлияли на молодого ученого, направив его мысль по тому пути, который привел его несколько позже к открытию квантовой механики.
Квантовая теория дисперсии – высший успех старой квантовой теории – уже содержала в зародыше принципы, триумф которых мы видим в новых волновой и квантовой механиках.

Глава VIII. Волновая механика
1. Основные идеи волновой механики
В 1923 г. стало почти ясно, что теория Бора и старая теория квантов лишь промежуточное звено между классическими представлениями и какими-то очень новыми взглядами, позволяющими глубже проникнуть в исследование квантовых явлений. В старой квантовой теории условия квантования в каком-то смысле чисто внешним образом накладывались на результаты классической теории. Существенно разрывная природа квантования, которая выражалась целыми числами, так называемыми квантовыми числами, находилась в разительном противоречии с непрерывной природой движений, описываемых старой динамикой, как ньютоновой, так и эйнштейновой. Стало совершенно очевидно, что требуется построить новую механику, где квантовые идеи войдут в самую основу построения, а не будут добавлены под конец, как в старой теории квантов.
И любопытно, что эта программа начала осуществляться почти одновременно двумя совершенно различными путями в работах ученых, наклонности которых по существу были совершенно различны. Так были созданы волновая механика, с одной стороны, и квантовая механика, с другой. На первый взгляд казалось, что обе теории совершенно противоположны и по внешнему виду и по применяемому формализму. Эти теории, такие разные по виду, следует на самом деле считать одними и теми же, потому что каждая из них есть лишь перевод другой на иной математический язык. Эти столь различные вначале попытки построить новую механику, по-настоящему насыщенную квантовыми понятиями, в конце концов слились в единое целое, в теорию, которая может быть названа новой квантовой теорией.
Рождение волновой механики (1923 г.) немного опередило квантовую механику (1925 г.). Кроме того, первая оказалась лучше подготовленной к применению математического аппарата.
Прежде всего хотелось бы обрисовать причины, которые привели в 1923…1924 гг. к установлению основных идей волновой механики. Открытый к этому времени эффект Комптона и изучение фотоэффекта рентгеновских лучей лишний раз замечательно подтверждали представление Эйнштейна о световых квантах. Теперь уже едва ли можно было оспаривать дискретную природу излучения и существование фотонов. Следовательно, с еще большей остротой встала грозная дилемма: что такое свет – волны или частицы? Хочешь не хочешь, а для полного описания свойств излучения нужно было применять поочередно картину то волн, то частиц. Соотношение Эйнштейна между частотой и энергией, введенное им на основе его теории фотонов, ясно показало, что этот дуализм излучения неразрывно связан с самим существованием квантов. Тогда возникает законный вопрос, не связан ли этот странный дуализм волн и частиц, примером которого так замечательно и несомненно явился свет, с глубокой и скрытой природой кванта действия? Не следует ли ожидать, что двойственность такого типа обнаружится везде, где только появляется постоянная Планка.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72