ТВОРЧЕСТВО

ПОЗНАНИЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

взбалтывание повторяется несколько раз с новыми порциями теплой подкисленной воды до полного осветления. Беление масла также достигается взбалтыванием его со слабой серною кислотою, с соляною кислотою, с растворами сернокислых солей и пр. Все химические способы отбелки масла, хотя дают скорые результаты, но влияют отрицательно на способность высыхания. Свойство О. давать блестящую, эластичную и прозрачную, после высыхания, пленку – неоценимо в деле лакового производства, при ее важной способности растворять твердые смолы. Масляные лаки в состав которых как растворитель, входит О., считаются самыми прочными и наиболее применимыми в деле лакирования. Приготовление О. литографской и типографской возможно только на голом огне. Для этого устраиваются очаги с круглыми отверстиями. куда вставляются подвижные масловарочные котелки. Котелки эти, объемом в 5 – 6 ведер, должны быть медные или железные, внутри эмалированные и открытые. Масло берется чистое льняное, без следа подмесей, совершенно отстоянное и сухое. Вся операция состоит в уваривании масла при температуре до 350° Ц. Подмесь сиккативов не допускается. При такой температуре уваривание продолжается от 3 до 6 часов, при постоянном перемешивании. Отличают О. слабую, среднюю и крепкую, которые разнятся только степенью густоты; все три сорта применяются в литографском и типографском деле. Уловить момент остановки варки масла в приготовлении требуемого сорта О. дело навыка и описанию не поддается. Было сделано много попыток производства малярной О. холодным способом, но все они оказывались безуспешными.
И. С. Occoвецкий.
Олово
Олово (хим.; лат. Stannum; франц. Etain, нем. Zinn; химическое обозначение Sn) – принадлежит к числу металлов, известных человечеству в глубокой древности. Египтяне знали его за 3000 – 4000 л. до Р. Хр. и о нем говорится в Библии. В природе О. находится главным образом в виде кислородного соединения SnО2 – оловянного камня, реже встречается в виде сернистого О. в соединении с сернистым железом или медью. О. имеет серебристо-белый цвет, но темнее серебра. Оно немного тверже свинца и очень тягуче – при вальцевании дает чрезвычайно тонкие листы, но проволока из него легко рвется. В обыкновенных условиях оно имеет ясно кристаллическую структуру. При сгибании палочки О. слышится характерный звук, который объясняется разрывами в кристаллической массе. Хорошо образованные кристаллы О. легко получить, разлагая слабым током, напр. раствор хлористого О. в воде (см. ниже); проще получаются они, если на крепкий раствор хлористого О., подкисленный соляной кислотой, налить осторожно воды (так, чтобы она не смешалась с раствором) и погрузить сюда оловянную пластинку – на ней начнут расти кристаллы около слоя, разделяющего жидкости. По мере образования. кристаллов, пластинка в нижней части будет растворяться. Кристаллы, по-видимому, принадлежат к правильной системе. О. плавится при 228° – 232°, а перед тем (ок. 100°) становится хрупким, кипят от 1460° до 1600° по разл. данным. Коэфф. расшир.: лин. между 0° и 100°=0,00002193 (Кальверт-Джонсон), куб. – V = V0(l + 0,000061t + 0,0000000789t2) (Маттисен); уд. в. кованного O. = 7,3; кристаллического = 7,18. Теплоемкость 0,05623 (Реньо). Теплопроводность 14,5 – 15,4 (для серебра = 100). Электропроводность = 11,45 при 21° (Маттисен) (для серебра == 100). Интересно действие на О. низкой температуры. В Сибири было замечено, что в большие морозы на оловянной посуде появляются серые пятна, которые постепенно растут. В этих местах О. делается ломкими, легко продырявливается. Фричше охлаждал О. до – 35° и показал, что при этом кристаллическая структура его изменяется и теряется связность между его частицами. При нагревании (у Фричше до 35°) такое О. переходит в обыкновенное. Уд. вес измененного О. = 5,952 (Фричше), так что перемена состояния сопровождается большим увеличением объема; теплоемкость найдена 0,0545 (Реньо) тоже меньше, чем для обыкновенного О. При обыкновенной темп-ре. О. почти не изменяется в сухом или влажном воздухе; растворы солей и очень слабые кисл. мало на него действуют; благодаря этому его и применяют для предохранения других металлов. При нагревании О. дает окись SnО2 пары его горят белым пламенем. Крепкая соляная кислота, в особенности при нагревании, легко растворяет О. с выделением водорода и образованием хлористого О. SnCl2 растворение идет лучше в присутствии платины вследствие образования гальванической пары. Серная кислота тоже растворяет О., при этом, в зависимости от крепости кислоты, нагревания и пр. происходит раскисление кислоты: выделяется сернистый газ, сероводород, сера, но получается и водород. Азотная кислота, очень крепкая, на О. не действует, более слабая, напр. уд. веса 1,4, энергично окисляет его: выделяются окислы азота и образуется нерастворимая метаоловянная кислота; если азотная кислота слаба и действие происходить медленно и на холоду, то О. переходит в раствор – образуется азотнокислая соль О., аммиак и гидроксиламин. Хлор, бром, йод прямо соединяются с О., с металлами оно дает сплавы. При накаливании О. разлагает воду. Атомный вес О. ок. 118 (Мейер-Цейберт считают 117,37; Ван дер Плаатс – 118,07 и пр.). В периодической системе элементов О. помещается в IV группы, в нечетном ряду, вместе с кремнием, германием и свинцом. Подобно им, оно дает главным образом два ряда соединений вида SnX2 и SnX4; здесь также закись SnО имеет характер слабого основания и окись SnО2 – характер слабой кисл. Для О. известны соединения и промежуточного типа, Sn2X6, а с кислородом О. дает также и SnО3.
Закись О. SnO получается из гидрата закиси олова, который, в свою очередь, получается в виде белого аморфного осадка при разложении щелочами или их углекислыми солями хлористого О. SnCl2 Гидрат закиси О. при нагревании или при кипячении с водой выделяет очень легко воду и переходит в черный аморфный порошок SnО. Закись О. легко получается в кристаллическом виде, когда такое разложение гидрата закиси происходить в присутствии щелочей (но не аммиака), слабых кислот, напр. соляной, уксусной, некоторых солей, например нашатыря. Гидрат закиси олова легко растворяется в щелочах Na(HO) и К(НО); из таких растворов благодаря меньшей растворимости SnО в щелочах, при стоянии выделяются темные блестящие кристаллы SnО с уд. в. до 6,7. Быстрота обезвоживания гидрата зависит от концентрации щелочи и температуры. В очень концентрированных растворах или при кипячении происходит дальнейшая реакция: выделение металлического О. и образование окиси О. SnО2, которая дает со щелочью соль, напр. 2SnO + 2KHO = Sn + K2SnO3 + Н2О. Получение кристаллической закиси О. при действии слабой соляной кислоты на гидрат объясняется (Ditte) таким образом, что сначала образуется некоторое количество хлористого О. SnCl2 (определяемое степенью диссоциации его);
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217