ТВОРЧЕСТВО

ПОЗНАНИЕ


А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

зоны про-
лиферации и развития, направленность перемещения и замещения тканей, зо-
ны гибели и специализации. Здесь же мы видим наличие потенциальных воз-
можностей к регенерации.
Если для моделирования гомеостата выделить только одну цель, напри-
мер, синтез фермента, гормона, которые требуются для регуляторных функ-
ций организма или какого-то отдельного органа, то такая модель гомеоста-
та будет симметричной и принципиально ничем не отличаться от описанных
выше гомеостата трансляции или гомеостата функционирующего гена.
ФРАГМЕНТ ОДНОПОЛЮСНОЙ МОДЕЛИ
МОРФОФУНКЦИОНАЛЬНОГО КОМПЛЕКСА

t
t
клеточный ряд
Nm
to
0
2
020
1
2
2
1
140,110
1
2.5
3
3
141 111
1
4
6
2
280 220
2
5
8
1
282 340 310
2.7
4.3
9
3
283 341 311
2.5
6
12
2
286 480 420
3.3
6
14
1
3160 340 482 540 510
4
6.6
15
3
3161 341 483 541 511
3.7
8
18
2
3164 480 420 486 680 620
4.5
7.3
20
1
3166 482 540 510 5160 540 682 740 710
5.2
6.9
21
3
3167 483 541 511 5161 541 683 741 711
5
8.6
24
2
31610 486 680 620 5164 680 620 686 880 {820}
5.5
7.8
26
1
31612 5160 540 682 740 5166 682 740 710 7160 740 882
6.1
8.1
27
3
31613 5161 541 683 741 711 5167 683 741 711 7161 741 883
6
9.5
30
2
4320 480 5164 680 620 686 {880}820 51610 686 880{820} 7164 {880} 820
886
6.6
9.5
32
1
4322 482 5166 682 740 710 7160 740 {882}{940}910 51612
7160 740 882 7166 {882}940{910}51612 7160 740 882
6.9
9.5
33
3
4323 483 5167 683 711 7161 741 {883}{941}911 51613
7161 741 883 7167 {883} 941 911 51613 7161 741 883
6.7
10.8
Обозначения:
16, 8 - время цикла клетки;
нижний индекс - время жизни клетки;
верхний индекс - номер деления;
t - время жизни клеточной популяции;
t - шаг или сдвиг времени;
tо - среднее время обновления клеток;
Nm - среднее число делений, проделанных клетками,
находящимися в цикле к определенному моменту времени
жизни популяции;
{ } - дифференцированная (неделящаяся) клетка;
911- погибшая клетка

Так как эта численная модель эпителиальной ткани показала хорошее
совпадение с реальной эпителиальной железистой тканью, ее можно принять
для создания частной модели гомеостата железистого эпителия. Из свойств
разработанной численной модели видно, что представленные расчеты ткане-
вой динамики субпопуляций ткани, указывают на перманентную несимметрич-
ность ее гомеостата. Для построения гомеостата необходимо выявить цели,
стоящие перед ним. Это - рост, развитие и выработка специальных веществ
гормонов или ферментов. Основным структурно-функциональным элементом го-
меостата, выполняющим сразу несколько противоречивых функций, будут
клетки в динамике их развития и функционирования.
Модель ткани железистого эпителия можно представить в следующем виде
(рис.12):
Рис. 12. Гомеостат функционирующей ткани железистого эпителия. -гиб-
нущие клетки; D - дифференцирующиеся клетки; К - камбий.

Патологии тканевых гомеостатов
Патологии тканевых гомеостатов связаны с нарушениями в системах уп-
равления динамикой клеточной популяции. Существует два класса источников
патологии: 1 - внутритканевые, связанные с внутриклеточным нарушением
регуляции считывания генетической информации, и 2 - внетканевые, эпиге-
нетические - индуцирующие активацию считывания архивированной информа-
ции. С формальной точки зрения для гомеостата это означает либо появле-
ние (разрыв) связей внутри гомеостата, либо появление на входе новых ин-
формационных потоков из внешней среды.
Внутриклеточные механизмы регуляции митотической пролиферации клеток
непосредственно связаны с функцией клеточных онкогенов, которые стимули-
руют митотические деления клеток и повышают их мутабельность [122].
В простейшем случае система регуляции клеточного онкогена представле-
на тремя генами: собственно онкогеном, геном-репрессором и геном-модифи-
катором. Активно функционирующий ген-репрессор блокирует функцию онкоге-
на. Ген-модификатор изменяет уровень функциональной активности онкогена,
но не способен включать или выключать онкоген.
Полное торможение онкогена в клетках определенной ткани должно приво-
дить к торможению митотических делений клеток и прекращению роста ткани
(аплазия). В эмбриональный период нарушение такого рода является ле-
тальным событием.
Снижение функциональной активности онкогена в определенной ткани
должно приводить к недоразвитию этой ткани, к ее гипоплазии. В эмбриоге-
незе гипопластические процессы могут приводить к недоразвитию органов и
являются полулетальным событием.
Повышение активности онкогена при прочих равных условиях должно при-
водить к более активной стимуляции митотических делений клеток, что спо-
собствует гиперпластическому развитию ткани. В эмбриогенезе процесс ги-
перплазии тканей может приводить к гибели личинки, т.е. является полуле-
тальным событием.
Беспредельная, перманентная активация онкогена приводит к непрерывной
стимуляции митотической пролиферации клеток. В эмбриогенезе беспрерывный
рост ткани приводит к летальному событию. В постнатальном периоде бесп-
рерывная стимуляция митотических делений клеток в сочетании с процессом
мутационной их изменчивости обеспечивают беспрерывное накопление популя-
ции клеток, обладающих необходимыми и достаточными признаками клеток
злокачественной опухоли.
Гены-модификаторы изменяют уровень активности онкогена и при его пов-
реждении либо нормализуют функцию онкогена, либо, напротив, усиливают
эффект имеющегося нарушения. Так, в эмбриогенезе гены- модификаторы мо-
гут либо нормализовать функцию поврежденного онкогена и тем обеспечить
развитие, либо усилить полулетальный эффект мутационно поврежденного он-
когена. Селекция на жизнеспособность линии животных, которая несет пов-
режденный онкоген с полулетальной мутацией, приводит к отбору особей с
активно функционирующим геном-модификатором, что и обеспечивает нормали-
зацию развития эмбрионов.
Активно функционирующие гены-модификаторы, накопленные в ходе селек-
ции, выполняют по существу функцию компенсаторного комплекса генов, ко-
торый при скрещивании такой линии животных с диким типом, обеспечивает
по современным представлениям эффект гетерозиса за счет гиперфункции в
клетках гибридного организма компенсаторного комплекса генов.
Онкоген и регуляторные гены организованы по принципу полимерного ге-
на: каждый из них представлен в геноме группой до 10-12 аллелей, которые
взаимно компенсируют функцию друг друга. Такая полимерная организация, в
частности гена-репрессора, позволяет с единых генетических позиций
объяснить как многостадийный, так и двухстадийный канцерогенез. При на-
личии 5-6 существенно необходимых стадий развития новообразования (нап-
ример, лейкоз) можно предполагать последовательное повреждение по типу
генных мутаций 5-6 отдельных аллелей полимерного гена-репрессора. При
двухстадийном варианте развития злокачественной опухоли (например, опу-
холи солидного типа) можно допустить повреждение значительной части ал-
лелей полимерного гена-репрессора в результате двух последовательных ре-
цессивных мутаций, связанных с хромосомными или геномными реорганизация-
ми.
ГОМЕОСТАТИЧЕСКАЯ МОДЕЛЬ ТКАНЕВЫХ СИСТЕМ (ОРГАНОВ)

Тканевые системы (органы) формируются в процессе эволюционного разви-
тия для выполнения жизненно важных целей функционирования единого орга-
низма. Здесь мы обнаруживаем явные параллели в целях функциональных ор-
ганизаций органов с клеточными органеллами в одноклеточных организмах.
Единство целей разных интеграционных уровней создает функциональные ана-
логи точно также, как простейшая форма единичного фрактала повторяется
на определенных стадиях интеграции множества единичных однотипных по
форме фракталов.
Движущие силы индивидуального развития создаются по мере дифференци-
ровки зародыша в результате взаимодействия продуктов этой дифференциров-
ки. Взаимодействие разных частей ведет к новым дифференцировкам и
дальнейшим взаимодействиям. Устойчивость организации покоится не на
прочности каких-либо структур, а на сложности системы взаимодействий
(корреляций) и на регуляторном их характере [51]. Шмальгаузен подчерки-
вает, что взаимоотношения между соседними частями растущего организма
сопровождаются обменом продуктами метаболизма, оказывающего контрольные,
регуляторные функции формообразовательного процесса. Продукты орга-
но-специфического метаболизма служат для детерминации менее дифференци-
рованных соседних зачатков. Система связи используется в одном направле-
нии для передачи директивной информации (детерминация формообразования)
и в другом направлении для передачи обратной информации (контроль формо-
образования). Таким образом, создаются сложные системы взаимодействия
частей, являющиеся основой регулируемого саморазвития [51, c. 329].
Практически еще в начале 60-х годов выдающийся ученый И.И. Шмальгау-
зен описал в общем виде принцип работы гомеостатической системы в виде
сложной системы авторегуляционных циклов передачи и реализации информа-
ции (наследственной и ненаследственной) в процессе индивидуального раз-
вития организма.
Гистологически орган состоит из системы разных тканевых образований,
подчиненных выполнению единой функции. Входная информация преобразуется
в каждой из тканей в соответствующий только ее специфике носитель. Сово-
купность и пространственно-временная последовательность носителей преоб-
разованной входной информации есть отраженная органом (гомеостатом) ин-
формация, которая выражается в активном воздействии на внешнюю среду.
Для примера рассмотрим гомеостат мышцы как органа, с помощью которого
осуществляется механическое движение. Гомеостат состоит из мышечных во-
локон экстрафузальных и интрафузальных, моторных концевых пластинок, яв-
ляющихся входом информации из внешней среды, детекторов обратной связи
(проприорецепторов, располагающихся на интрафузальных волокнах, телец
Пачини, свободных нервных окончаний, рецепторов Гольджи в сухожилиях),
мотонейронов соответствующего сегмента спинного мозга, сухожилий, лимфа-
тического окружения, кровеносных сосудов.

Рис.13 Модель гомеостата мышечного аппарата движения конечности.
Как видно из модели, орган не является целостным (симметричным) гоме-
остатом, так как для организации функционального единства такого гомеос-
тата необходимо участие нескольких специализированных систем: нервной,
гуморальной и собственно мышечной.
Из анатомии и физиологии известно большинство структурно-функцио-
нальных единиц, составляющих гомеостаты органов единого организма. Как
уже отмечалось ранее, целостный организм приобретает новое качество -
симметричность. Симметричность низшего уровня организации (клетка) от
высшей (организм) отличается только широтой свободы воли, т.е. качест-
венно большим спектром компенсаторных реакций на изменения информацион-
ных потоков внешней среды.
О ГОМЕОСТАТИЧЕСКОЙ МОДЕЛИ ОРГАНИЗМА
КАК ЦЕЛОГО
Многоклеточный организм, как целое, обладает качественно новыми воз-
можностями, дающими ему преимущество в выживании по сравнению с более
низкоорганизованными формами.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

загрузка...