ТВОРЧЕСТВО

ПОЗНАНИЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

«Для того чтобы возникла инерция (а инерция - это мера пространственная, мера, характеризующая способность тел сохранять пространственное положение), нужны какие-то гравитирующие тела». И вот возникает связка между инерцией, гравитацией и пространством. Но я повторяю, этот принцип отвергает современная физика. Ну, скажем так, он отвергается большинством учёных, он является уже некоей неортодоксальной точкой зрения. Но, тем не менее, мне кажется, что какая-то глубина всё-таки в этом есть. И то, что Эйнштейн вышел на правильную теорию, исходя из принципа Маха, может быть, в этом есть какой-то глубокий смысл.
А.П. Таким образом, принцип Маха дал Эйнштейну повод построить как раз геометрическую теорию, которая и является общей теорией относительности. Ну и что? А другие теории не геометрические? Действительно, другие теории, которые строились, они строились в фиксированном пространстве-времени. И чаще всего - в плоском пространстве-времени. Что такое плоское пространство-время? Все эксперименты, которые проводились очень давно и многие из которых сейчас проводятся, они проводятся на Земле, в земных условиях. Например, если рассматривается электродинамика, то она рассматривается в лаборатории на Земле.
Мы можем считать пространство плоским. Почему? Потому что эффектами общей теории относительности можно совершенно пренебречь, эффектами гравитации можно пренебречь за вычетом поля Земли, что делается легко.
Пространство Минковского это самое плоское пространство-время, оно обладает рядом преимуществ. Прежде всего, оно служит ареной, ареной для той драмы, которая происходит с физическими полями и частицами. Его структура хорошо известна, и она ещё обладает таким преимуществом, что в пространстве Минковского легко определить такие важные характеристики системы, как энергия или импульс. Вот простое свойство. В пространство Минковского безболезненно можно сменить систему отсчёта, то есть начало отсчёта времени. Этой простой процедуре соответствует определение энергии всей системы.
В общей теории относительности тоже есть арена, тоже есть пространство-время, но ситуация несколько отличная. Потому что пространство-время в общей теории относительности само является динамическим полем. Но на самом деле не само пространство-время, а метрические коэффициенты, то есть коэффициенты, благодаря которым измеряется расстояние в общей теории относительности. Мало того, вот эти искривления в общей теории относительности они как бы влияют сами на себя. Поэтому гравитационное поле ещё обладает таким свойством, как самодействие.
Ну, и возникает вопрос: а вообще, можно определить энергию общей теории относительности? Вернёмся к этому плоскому пространству-времени. На самом деле теорию тяготения пытались строить не как геометрическую, а как полевую теорию. Сам Эйнштейн принимал в этом участие, с Фоккером у него были статьи на эту тему.
После создания общей теории относительности попытки тоже продолжались. Они продолжаются до настоящего времени.
Представим, что есть у нас пространство Минковского, и поле тяготения типа электромагнитного. Если мы будем последовательно строить теорию, чтобы она была логически непротиворечивой и чтобы удовлетворяла всем тестам, которые имеются, мало того, чтобы она обладала минимальным набором предположений, то неминуемо окажется, что мы опять придём к общей теории относительности. Здесь возникает вопрос: а нет ли тут противоречия? Было у нас пространство Минковского, с которого мы начинали построение, а пришли к общей теории относительности, где нет никакого фиксированного пространства-времени, а есть искривлённое динамическое пространство.
А.Г. Куда делось пространство-время?
А.П. Куда оно делось? На самом деле никакого противоречия нет. Нужно проводить эксперимент. Если у нас рассматривается простая электродинамика в плоском пространстве-времени, то пространство Минковского можно определить. Мы пошлём лучи света и будем измерять, по каким траекториям они распространяются. Мы увидим, что траектории прямые, что частота света никак не меняется. Собственно, это и есть определение пространства Минковского.
Вот есть пространство Минковского, и есть гравитационное поле. И если там мы попытаемся определить это пространство Минковского, то придём к такому положению, что лучи света уже будут распространяться по кривым. Частота будет меняться от точки к точке. То есть мы уже не можем определить пространство Минковского. Мало того, если мы попытаемся определить пространство Минковского с помощью гравитационных волн, то опять придём к тому, что мы не найдём его.
Если мы посмотрим на уравнения, то окажется, что в уравнениях метрические коэффициенты пространства Минковского исчезли и заменились динамическими метрическими коэффициентами в общей теории относительности.
Ну, и встаёт вопрос: можно ли тогда вот в таком пространстве, в такой теории, где нет фиксированного пространства-времени, определить энергию? Она хорошо определяется там, где есть фиксированное пространство-время.
Нужно понять, существуют ли вообще эффекты, где гравитационная энергия как-то проявляет себя? Один из важных моментов, где это проявляется, - это гравитационные волны, которые очень скоро будут пытаться детектировать: общая теория относительности их предсказывает. И в этом нет никаких сомнений.
Попытаюсь сейчас показать почему. Ну, представим, что у нас есть двойная система, две звезды. Такие звёзды наблюдаются. И наблюдаются компактные звёзды, пульсары. То есть вращающиеся нейтронные звёзды.
Они наблюдаются длительный период. И оказывается, что орбиты этих звёзд сближаются. Это означает, что система отдаёт энергию. А куда она исчезает? Она исчезает за счёт излучения гравитационных волн. Больше некуда.
Это косвенное подтверждение того, что гравитационные волны несут энергию.
С другой стороны, если мы опять обратимся к этой двойной системе, то, что её держит? Её держит гравитационная связь. А давайте попытаемся разорвать двойную систему. То есть, извне вложить в двойную систему какую-то внешнюю энергию. И разнесём эти звёзды на расстояние, где они уже очень слабо взаимодействуют, и этим взаимодействием можно будет пренебречь. Тогда вот эту гравитационную связь можно интерпретировать так, что системы имеют отрицательную потенциальную энергию гравитационной связи.
Вот предельный случай этого: существует модель замкнутой Вселенной. Пространство описывается трехмерной сферой это очень похоже на обычную сферу. Материи в такой Вселенной ограниченное количество. И по теории энергия вот такого шара, такой замкнутой Вселенной, она должна равняться нулю.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70