ТВОРЧЕСТВО

ПОЗНАНИЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 


Есть ещё одна задача интересная - всё-таки проверить теорию Эйнштейна. Ведь можно разогнать солнечным парусом или другим каким-то двигателем, без людей, разогнать что-то до скорости света и потом попытаться вернуть назад - это тоже грандиозная задача. Она не сегодняшнего дня, это задача далёкого будущего, но при этом можно будет всё-таки проверить: правильна теория Эйнштейна или нет, как там идут часы, что в этом случае с атомами и молекулами происходит. Пока это только математические расчёты и некоторый опыт, который доказывает правильность этой теории в макромире и в микромире.
А.Г. А какие технологии, кроме солнечного паруса, могут разогнать космический корабль любого размера до больших скоростей?
А.П. Хороший вопрос. Представим себе, что у нас есть свет обычного фонарика, мощность карманного фонарика или намного большего прожектора, энергия, которая добывается, конечно, из солнечной энергии, с помощью солнечных батарей - а дальше уже, возможно, ядерными реакторами.
Но, так или иначе, этот свет создаёт малую тягу, но оказывается, что если малая тяга - в граммы - действует безгранично долго, то создаются гигантские скорости. Это фотонный двигатель.
Г.Г. Ещё электрореактивный двигатель.
А.П. Да, они уже испытаны как двигатели ориентации на наших…
А.Г. Электрореактивный двигатель? А что это, каков принцип его действия?
Г.Г. Вот в 2007-м году на нём собираются лететь?
А.П. Да, но, тут есть хороший слайд, может, стоит отвлечься на минуточку. Есть альтернативные варианты освоения околоземного пространства. Вот скажем, американцы недавно запустили этот воздушный шар. Это две тонны веса на высоте 40 км, и он за 100 суток собирает данные о 90% земной поверхности. Вот такие вот шары. И есть самолёты, которые летают на высоте 30 км на солнечных батареях.
Г.Г. Без топлива.
А.П. Это ещё опытные образцы, конечно. То есть, околоземное пространство можно наблюдать не только из космоса. Но космос - он тоже позволяет много. И, в общем, вот эти альтернативные варианты нельзя забывать.
А если говорить про электродвигатели, то у нас, в нашей стране, сейчас разрабатывается очень хороший проект, на 2007-й год он нацелен. Его разрабатывают 4 организации, это МПО имени Лавочкина, ИКИ, Геохим, институт имени Виноградова бывший, и, наконец, наш Институт прикладной математики - вот как раз показывают нужный слайд.
Это очень интересный проект - полёт за реликтовым веществом к Фобосу. И вы можете увидеть на слайде эти большие солнечные батареи. Они создают энергию, которая разгоняет рабочее тело, нейтральный газ, ионизирует его за счёт электрических сил, разгоняет до больших скоростей. Потом для того, чтобы этот объект не зарядился (если вылетит заряженная частица, останется заряд в самом корабле), он отбирает, сажает назад эти отобранные электроны в ионы, и уже эти атомы, превратившись снова в нейтральные, улетают с большой скоростью.
И вот эта тяга позволяет долететь до Марса, сесть на Фобос, затем взять там грунт и вернуть его на Землю. Причём полёт к Марсу с возвратом к Земле для человека крайне неприятен тем, что для того чтобы лететь назад на Землю, на Марсе около года надо ждать, пока Марс и Земля займут такую позицию, когда можно лететь с Марса на Землю. А вот на малых тягах не надо ждать, потому что аппарат медленно разгоняется, и время уходит как раз на разгон, и аппарат возвращается к Земле, когда надо, причём с вопросами точности всё получается хорошо. Вот так работают электрореактивные двигатели.
А.Г. Вопрос к вам как к баллистику, а к вам как практику. Скажите, пожалуйста, вот даже когда американцы в автоматическом режиме сажали «Аполлон» на Луну, и то задержка в 2 секунды создавала достаточно большие проблемы. Сигнал идёт секунду туда, секунду обратно, за это время картина уже меняется. Какова задержка при полёте на Марс или на Фобос? Как сажать в автоматическом режиме?
А.П. Да, мы этим подробно занимаемся. Во-первых, американцы сажали не в автоматическом режиме. Сажал Армстронг, и это намного проще, чем сажать так, как мы сажали.
Г.Г. Начали посадку автономно. Не с Земли сажали, а автономно.
А.Г. Это одиннадцатый…
А.П. Там сидел лётчик, профессионал, и он сажал как надо. А вот наши системы сажались автоматически. Но они, опять же, сажались по той информации о дальности и скорости, которая поступала к ним от трех лучей радиолокатора.
Г.Г. Земля не участвовала, поэтому задержек минутных не было. Это всё автономно на корабле происходило.
А.П. Но тем не менее, Марс - это задержка сигнала от 4 до 40 минут. И всё-таки эти системы, хоть они автоматические, но Земля их подробно поддерживает. Без поддержки Земли ничего невозможно. Вообще-то говоря, все марсоходы имеют всего лишь 5 команд: вперёд, назад, направо, налево и вызов Земли. Вот вызов Земли - это на случай, когда что-то неизвестно.
И это замечательная задача для науки, для теории управления - как управлять автоматическим объектом, но в то же время дистанционно управляемым, с большими задержками в канале связи. Он должен быть настолько автоматическим, чтобы решать свою задачу сам, и в то же время человек должен иметь возможность вмешаться.
Наши сотрудники замечательно управляют роботами через Интернет, с задержками передачи информации, соизмеримыми, в общем, с теми, что на Марсе. И там как раз отрабатываются эти двухуровневые системы: внизу автоматическая и человечья где-то на другом конце.
Г.Г. Практически мы выходим на задачу создания искусственного интеллекта - уровни, подуровни…
А.П. Да, искусственный интеллект - это серьёзная вещь, конечно.
Вот Марс, посмотрите. Набор камней. Пустыня такая же, как на том полигоне, с которого мы делали запуски на Марс.
Г.Г. Да, или как на Камчатке…
А.П. Да, когда мы услышали, что американцы сфотографировали Марс, мы были на том полигоне в районе Байконура, и я спросил: «Ну, и что же там?» А мне говорят: «Такая же пустыня, как и здесь».
Вот, видите, условия жизни на Марсе - ноль градусов в самом хорошем случае, и, говорят, что иногда бывает 10, где-то в районе экватора. А так минус 60, минус 100, и атмосфера, как на высоте много десятков километров, 5 миллибар. Плюс - пыльные бури.
А.Г. Вот я и спрашиваю: что же должно произойти на Земле такого, чтобы мы спасались на Венере, где 500 градусов, на Марсе, где минус 100 или на Луне, где нет атмосферы?
А.П. На Венере мы не будем спасаться. Венера нам должна показать, на самом деле, как избавиться от того, что на ней - парниковый эффект и так далее.
Г.Г. Венера - это такая страшилка, чтобы человечество поняло, что к чему.
А.П. А спасаться можно на Луне, поэтому говорят о лунной базе. Может быть, на Луне человечеству надо спасаться… А потом ведь есть ещё одно обстоятельство. Народонаселение растёт - сейчас уже 6 миллиардов.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57