ТВОРЧЕСТВО

ПОЗНАНИЕ

 


Вопрос о том, почему те или иные характеристики имеют именно такие значения, от-нюдь не является праздным; Вселенная была бы совсем иной, если бы свойства материи и частиц, отвечающих за фундаментальные взаимодействия, хотя бы чуть-чуть изменились. Например, существование стабильных ядер, образующих около сотни элементов периодической системы, очень сильно зависит от соотношения сильного и электромагнитного взаимодействия. Протоны, находящиеся в атомном ядре, отталкивают друг друга в результате действия электромагнитных сил. К счастью, сильное взаимодействие между составляющими эти протоны кварками преодолевает силы отталкивания и удерживает протоны вместе. Однако относительно небольшое изменение соотношения между величинами этих двух взаимодействий может легко нарушить равновесие и привести к разрушению большинства атомных ядер. Далее, если бы масса электрона была всего в несколько раз больше, электроны и протоны начали бы объединяться, образуя нейтроны и захватывая ядра водорода (простейшего элемента во Вселенной, с ядром, состоящим из одного протона), а это, в свою очередь, привело бы к нарушению баланса образования более сложных элементов. Существование звезд зависит от взаимодействий между стабильными ядрами; звезды не смогли бы образоваться при таком изменении фундаментальных физических законов. Величина гравитационных сил также играет важную роль. Огромная плотность вещества в центре звезды питает ядерный очаг и, тем самым, определяет интенсивность излучения звезды. Если величина гравитационных сил увеличится, давление в недрах звезд возрастет, что приведет к значительному росту интенсивности ядерных реакций. Но так же как яркое пламя исчерпывает горючее гораздо быстрее, чем тихое пламя свечи, так и увеличение скорости ядерных реакций привело бы к тому, что звезды, подобные нашему Солнцу, выгорели быстрее. Это оказало бы разрушительное влияние на зарождение жизни в том виде, в котором она нам известна. С другой стороны, если бы гравитационные силы существенно уменьшились, вещество не смогло бы собраться в скопления, не возникли бы звезды и галактики.
Мы могли бы продолжить, но основная идея ясна: Вселенная такая, какая она есть, потому, что вещество и частицы, отвечающие за фундаментальные взаимодействия, имеют те свойства, которые они имеют. Но существует ли научное объяснение тому, почему они имеют именно такие свойства?
Теория струн: основная идея
Теория струн представляет собой мощную парадигму понятий, которая впервые дает ответ на поставленные выше вопросы. Рассмотрим сначала основную идею этой теории.
Частицы, приведенные в табл. 1.1, являются «буквами» для всего вещества. Кажется, что, как и их лингвистические аналоги, частицы не имеют внутренней структуры. Теория струн говорит иное. Она утверждает, что если бы мы могли исследовать эти частицы с более высокой точностью, на много порядков превышающей наши современные технические возможности, мы обнаружили бы, что каждая из частиц является не точечным образованием, а состоит из крошечной одномерной петли. Внутри каждой частицы — вибрирующее, колеблющееся, пляшущее волокно, подобное бесконечно тонкой резиновой ленте, которое физики, не наделенные литературным вкусом Гелл-Манна, назвали струной. На рис. 1.1 мы продемонстрировали эту основную идею теории струн, взяв обычный материальный объект — яблоко — и последовательно увеличивая его структуру для того, чтобы показать ее компоненты во все более крупном масштабе. Теория струн добавляет новый микроскопический уровень — колеблющуюся петлю — к уже известной иерархии, идущей от атомов к протонам, нейтронам, электронам и кваркам2).
Рис. 1.1. Вещество состоит из атомов, которые в свою очередь состоят из кварков и электронов. Согласно теории струн все такие частицы в действительности представляют собой крошечные петли вибрирующих струн
Хотя это совершенно неочевидно, мы увидим в главе 6, что такая простая замена точечных элементарных компонентов материи струнами приводит к устранению противоречий между квантовой механикой и общей теорией относительности. Тем самым теория струн распутывает основной гордиев узел современной теоретической физики. Это выдающееся достижение, но оно представляет собой только часть причин, по которым теория струн вызывает такое восхищение.
Теория струн как единая теория всего
Во времена Эйнштейна сильное и слабое взаимодействия были еще неизвестны, однако его глубоко беспокоило существование даже двух различных взаимодействий — гравитационного и электромагнитного. Эйнштейн не мог примириться с тем, что природа устроена таким экстравагантным образом. Это стало побудительной причиной тридцатилетнего исследования, посвященного поиску так называемой единой теории поля, которая, как он надеялся, сможет продемонстрировать, что два взаимодействия представляют собой на самом деле проявления одного фундаментального принципа. Эти донкихотские поиски изолировали Эйнштейна от основного направления развития физики, которое, по вполне понятным причинам, было гораздо более озабочено разработкой новой дисциплины — квантовой механики. В начале 1940-х гг. он писал своему другу: «Я стал одиноким старым чудаком, который известен главным образом тем, что не носит носков, и которого выставляют как диковину по особым случаям»3'.
Эйнштейн просто опередил свое время. Прошло более полувека, и его мечта об универсальной теории стала Святым Граалем современной физики. При этом значительная часть сообщества физиков и математиков все больше верит в то, что теория струн может стать такой теорией. Основываясь на одном принципе — что на самом микроскопическом уровне все состоит из комбинаций вибрирующих волокон, — теория струн дает единый способ объяснения свойств всех взаимодействий и всех видов материи.
Например, теория струн говорит, что все наблюдаемые свойства элементарных частиц, приведенные в табл. 1.1 и 1.2, являются проявлением различных типов колебаний струн. Петли в теории струн имеют резонансные частоты, подобные резонансным частотам струн скрипки или пианино, на которых они предпочитают колебаться, и которые наше ухо воспринимает как музыкальные ноты и их более высокие гармоники. Но, как мы увидим далее, вместо того, чтобы звучать на определенной музыкальной ноте, каждая из разрешенных мод колебаний струны в теории струн проявляется в виде частицы, масса и заряды которой определяются конкретным видом колебания. Электрон представляет собой один вид колебания струны, и-кварк — другой, и так далее. Вместо набора разрозненных экспериментальных фактов свойства частиц в теории струн представляют собой проявления одного и того же физического свойства:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147