ТВОРЧЕСТВО

ПОЗНАНИЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

Какая кульминация мысли, философии и вычислений! Именно наутилус позволил мне прозреть!
Тальма вытаращил глаза.
– И каково же ваше прозрение?
– Итак, слышали ли, вы, друзья мои, о возвратной последовательности чисел Фибоначчи?
Наше молчание было достаточно выразительным.
– О ней стало известно в Европе около тысяча двухсотого года благодаря Леонардо Пизанскому, также известному как Фибоначчи, прошедшему курс обучения в Египте. История ее подлинного происхождения теряется во мраке тысячелетий. Взгляните.
Он показал нам листок бумаги. Там была написана последовательность чисел: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55.
– Вы замечаете закономерность этого ряда?
– По-моему, я как-то раз написал такие числа в лотерее, – уныло сообщил Тальма. – Они оказались невыигрышными.
– Нет, вы только посмотрите, как он образуется! – с воодушевлением продолжил ученый. – Каждое число является суммой двух предыдущих. Для вычисления очередного числа последовательности нужно сложить два последних – тридцать четыре и пятьдесят пять, и получим восемьдесят девять.
– Очаровательно, – нетерпеливо сказал Тальма.
– Самое потрясающее свойство этого ряда заключается в том, что с помощью геометрии его можно представить не просто как числа, а как ряд геометрических фигур. И мы с вами можем создать его, изобразив квадраты. – Он начертил два маленьких квадрата и поставил в них по единице. – Видите, вот два первых числа последовательности. Теперь пририсуем к ним третий квадрат, таким образом, чтобы сумма их сторон составила длину стороны нового квадрата, и обозначим его числом два. Далее, использовав сумму сторон единичного и двойного квадрата, пририсуем к ним тройной квадрат. Понимаете? – Он ловко начертил еще несколько фигур. – Сторона нового квадрата равна сумме двух сторон предыдущих квадратов, так же как и числа в последовательности Фибоначчи образуются из суммы двух предшествующих чисел. Площадь квадратов быстро растет.
Вскоре у него получилась вот такая картинка:
– А что означает то число сверху: один, шесть и так далее? – спросил я.
– Это соотношение длины стороны каждого из квадратов к стороне квадрата предыдущего, – ответил Жомар. – Заметьте, что соотношение стороны квадрата, обозначенного числом три, к стороне квадрата, обозначенного числом два, точно такое же, как соотношение, скажем, у квадратов «восемь» и «тринадцать».
– Я не понимаю.
– Вы же видите, что верхняя сторона квадрата «три» разделена на два неравных отрезка общей точкой квадратов «один» и «два», – терпеливо пояснил Жомар. – Так вот, пропорция между численными значениями сторон смежных квадратов остается постоянной, сколько бы квадратов вы ни добавили к этому чертежу. Более длинный отрезок больше не в полтора раза, а в одну целую шестьсот восемнадцать сотых раза, именно такую пропорцию греки и итальянцы называли золотым числом, или золотым сечением.
Мы с Тальма оба слегка напряглись.
– Вы имеете в виду, что оно каким-то образом связано с поисками золота?
– Да нет же, кретины. – Усмехнувшись, он с досадой мотнул головой. – Только то, что эти пропорции являются совершенными в применении к архитектуре или к памятникам вроде этой пирамиды. Есть нечто в этом соотношении, что невольно радует глаз. И конструкции соборов отражали такие божественные числа. Для достижения гармоничной композиции художники Ренессанса делили свои полотна на прямоугольники и треугольники, воспроизводящие соотношения золотого сечения. Греческие и римские архитекторы применяли его при строительстве храмов и дворцов. В общем, нам придется подтвердить мою гипотезу более точными измерениями, чем мы произвели сегодня, но я предчувствую, что числовое выражение угла наклона этой пирамиды будет точно соответствовать золотому числу, одна целая шестьсот восемнадцать сотых.
– А при чем тут наш наутилус?
– Я подхожу к этому. Для начала представьте линию, опускающуюся вниз, нам под ноги, с вершины этой громадины к основанию, вертикально вниз.
– Учитывая наше восхождение, я могу подтвердить, что это будет очень длинная линия, – заметил Тальма.
– Да, более четырехсот пятидесяти футов, – согласился Жомар. – А теперь мысленно проведите линию из центра пирамиды к ее внешней грани.
– Она будет равна половине ширины основания, – рискнул я предположить, осознавая, что, как и в беседах с Франклином, могу уловить лишь пару следующих шагов его рассуждений.
– Совершенно верно! – воскликнул Жомар. – У вас есть математическая интуиция, Гейдж! Теперь, представив линию, протянувшуюся от основания внешней стороны сюда к нам, к вершине пирамиды, мы получим правильный треугольник. Мое предположение заключается в том, что если опущенный нами к основанию перпендикуляр принять за единицу, то сторона поднимающегося к вершине треугольника будет равна одной целой шестистам восемнадцати тысячным – то есть мы получим ту самую гармоничную пропорцию, что отражена в нарисованных мной квадратах!
На его лице отразилось ликование. А на наших – явное недоумение.
– Ну как же вы не понимаете! Эту пирамиду построили в соответствии с числами Фибоначчи, квадратами Фибоначчи, с золотым числом, которое все художники считали гармоничным. И даже если мы того не осознаем, оно является истинной гармонией!
Тальма бросил взгляд на две соседние пирамиды.
– И все они построены именно так?
Жомар покачал головой.
– Нет. Я подозреваю, что большая пирамида имеет особое назначение. Она подобна книге, что-то рассказывающей нам. Она уникальна, хотя причины я пока не понимаю.
– Извините, Жомар, – сказал журналист. – Я, конечно, счастлив, что вас это все так порадовало, но тот факт, что воображаемая линия равна примерно одной целой и шести десятым, как вы говорили, представляется слишком уж ничтожной причиной для построения пирамиды, которой еще предназначено как-то отражать полушарие, или для сооружения пустой гробницы. И если ваши гипотезы хоть отчасти верны, то, вероятнее всего, древние египтяне были по меньшей мере так же безумны, как умны.
– Ах, мой друг, вот тут-то вы как раз и ошибаетесь, – радостно ответил ученый. – Я не виню вас за скептицизм, поскольку и сам целый день не замечал очевидного, пока остроглазый Гейдж не помог мне отыскать отпечаток наутилуса. Вы понимаете, последовательность чисел Фибоначчи переводится в геометрическую фигуру Фибоначчи, отображая один из самых прекрасных узоров в природе. Давайте нарисуем дугу, проходящую по нашим квадратам. – Он перевернул свой чертеж. – Смотрите, у нас получается вот такая кривая:
– Вот! И на что это похоже?
– На наутилуса, – рискнул высказаться я.
Наш спутник был чертовски умным, хотя я еще не понимал, куда он клонит.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128