ТВОРЧЕСТВО

ПОЗНАНИЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 


Скорость
Вернемся еще к одному свойству электромагнитной энергии. Независимо
от характера источника скорость ее распространения равна скорости света
- 300 тысяч километров в секунду. Такую величину даже в наше время труд-
но себе представить, в особенности если подумать, сколько усилий нужно,
чтобы самолет преодолел скорость звука - 332 метра в секунду. Вот если
бы воздуха не было...
Влияние воздуха
Самое смешное, что для МКВ-излучения воздуха как бы не существует.
Микроволновые колебания распространяются в атмосфере все с той же ско-
ростью света. Следовательно, те проблемы, которые представляли для диф-
ракционных ультразвуковых систем сквозняки и прочие движения воздуха,
для микроволновых систем такого рода не существуют. Таким образом, ра-
дарный принцип расположения приемника и передатчика детектора становится
в данном случае вовсе не обязательным.
Оптические свойства
Если вы представляете себе физические свойства света, то свойства
МКВ-излучения для вас почти уже ясны.
Сверхвысокочастотные волны движутся по прямой - значит, между пере-
датчиком и приемником должна быть открытая прямая линия; микроволны мож-
но отражать, преломлять и фокусировать.
Проникающая способность
Понятие проникающей способности впервые появилось в нашем с вами сло-
варе при обсуждении различных видов электромагнитной энергии. Но с ней
стоит разобраться поглубже, чтобы квалифицированно противопоставлять,
сравнивать и применять МКВ и ультразвуковые приборы в конкретных практи-
ческих ситуациях. Ключевым моментом является то, что МКВизлучение прони-
кает через все, кроме металла. То, насколько это влияет на систему сиг-
нализации, зависит от плотности и толщины слоя неметалла. Например, кир-
пичная стена поглощает большую часть энергии МКВ-излучения, и происходя-
щее за этой преградой не вызывает срабатывания системы - особенно если
принять во внимание оптические свойства луча, и пучок отводится от сте-
ны. Однако для МКВ-излучения "не существует" деревянных дверей, стекол,
панелей из ДСП. Именно поэтому использование МКВ-датчика вблизи окна мо-
жет стать источником большого числа ложных тревог.
Ультразвук может проникать через тонкие листы бумаги и пластика, но
не более того.
Для запоминания и применения в последующей работе сведений о проника-
ющей способности микроволнового излучения подойдет следующая мнемоничес-
кая формула: микроволны пронизывают неметаллические материалы благодаря
своей высокой скорости, но металлическая "броня" им не по зубам.
Ультразвук же, подобно кавалеристу, идет своей медленной леткой походкой
и не может пробить никаких стен.
Принцип работы
Что бы вы сказали о том, что летучая мышь знает едва ли не больше
всех нас о пространственном распознавании и определении в воздухе коор-
динат людей и препятствий. Лично для меня в работе по созданию радаров
этот крылатый зверек всегда был источником вдохновения. То, что летучая
мышь использует ультразвук интересно, но не принципиально. С тем же ус-
пехом она могла бы пользоваться и микроволновым излучением.
Летучая мышь настолько совершенно ориентируется в пространстве, что
пытавшимся добиться таких же результатов инженерам-конструкторам прихо-
дилось довольствоваться их простейшими подобиями, дальнейшее совер-
шенствование которых затруднялось их дороговизной и лавинообразным рос-
том технологических сложностей.
Кое-что еще о допплеровском эффекте
Если дело того стоит, то летучая мышь может пролететь в полной темно-
те через дыру не шире размаха ее крыльев. Чтобы выполнить такой трюк,
она должна своей сложной радарной измерительной системой определить точ-
ный угол сдвига своего тела в стороны, скорость, расстояние до отверстия
и его ширину. Для определения скорости летучая мышь использует доппле-
ровский эффект, а для измерения дистанции и направления различные виды
этих животных пользуются амплитудной или частотной модуляцией ультразву-
ка, а также их комбинацией.
К счастью, для систем сигнализации не важна скорость или направление
движения нарушителя. Достаточно знать, что он в помещении и движется к
охраняемому объекту. Следовательно, из арсенала летучей мыши можно поза-
имствовать лишь допплеровский эффект.
Стоит также обратить внимание на то, что в случае летучей мыши от-
верстие стоит на месте, а движется источник ультразвука. В системах сиг-
нализации все наоборот. Допплеровский эффект одинаково работает в обоих
случаях, так как он фиксирует относительное движение.
Радарное обнаружение
В главах 4 и 15 уже говорилось, что в радарах приемник и передатчик
расположены рядом, и сигнал в требуемом направлении излучается постоян-
но. Все, что попадается на пути луча, отражает часть его энергии на при-
емник в виде эха. Если объект стоит на месте, частота волны эха не изме-
нится. МКВ-датчик будет игнорировать такой отраженный сигнал даже при
сильных перемещениях воздуха в отличие от ультразвукового детектора.
Если объект движется, и это, к примеру, нарушитель, проникший в ком-
нату, частота сигнала-эха будет отличаться от частоты исходного им-
пульса. На основе этой информации приемник включит систему сигнализации.
Дифракционный метод обнаружения
Поскольку перемещения воздуха для микроволнового излучения не помеха,
то вполне разумно использовать дифракционный метод в МКВ-системах сигна-
лизации. То, что таких систем мало, связано, видимо, с существовавшей в
ранних моделях МКВ-детекторов проблемы "мертвых зон", уже описанной в
главе 15. Если же добавить еще один-два приемника и придать таким обра-
зом разносторонность системе приема, то в наших руках будет весьма эф-
фективное средство защиты складских помещений.
В главе 19 мы вновь возвратимся к проблеме "мертвых зон" или, иначе
говоря, ситуаций, когда поднимается ложная тревога из-за потери сигнала
на приемнике. Такие ситуации вполне могут возникнуть в микроволновых
заграждениях по периметру вне помещения.
Уловки обнаружения
Для МКВ нарушитель - не что иное, как сосуд с водой: вода прекрасно
отражает микроволновое излучение, особенно если она не совсем чистая.
Следовательно, несмотря на глубокое проникновение излучения в тело мик-
роволновый радар не смотрит "сквозь" нарушителя, а реагирует на него.
Надежность и контроль за ложными тревогами
Многое из того, что было сказано в главе 15 о способах избежания лож-
ных тревог, относится и к микроволновым радарам. Что особенно важно -
электронные системы обработки сигналов в обоих случаях практически сов-
падают.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95