ТВОРЧЕСТВО

ПОЗНАНИЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 


Проблема в том, что типичный допплеровский сдвиг частот в популярном
у конструкторов диапазоне волн длиной около 3 см совпадает с пульсацией
тока в системе питания - 5060 или 100-120 герц. Избежать этой трудности
можно, снабдив детектор качественным стабилизатором тока. Но такое уст-
ройство и обеспечение его долговременной надежной работы - тоже
конструкторская задача высокой сложности. Кроме того, диод Ганна, ис-
пользуемый для генерации МКВ, к сожалению, не очень эффективен. Разруше-
ние термического контакта между диодом и металлической оболочкой резона-
тора может привести к перегреву и последующему отказу покрытия. Преодо-
леть малую эффективность системы можно, используя недавно открытые ис-
точники микроволновой энергии, такие, как полевые транзисторы на базе
арсенида галлия (тиристоры).
Проблем со стабилизацией частоты тока и эффективностью источника из-
лучения можно избежать при переходе из диапазона волн 3 см в диапазон 12
см. Такая мера учетверяет размеры допплеровского сдвига и уводит его от
частоты пульсаций тока в сети питания. Кроме того, волны длиной 12 см
очень эффективно генерируются транзисторами, впаянными в схему, что сни-
жает риск перегрева. Остальные достоинства диапазона 12 см обсуждаются
ниже.
Формирование пучка
Соображения цены столь важны для создателей систем сигнализации, что
они, как правило, стараются применять в своих конструкциях компоненты,
уже опробованные в других областях техники. Ультразвуковой диск - излу-
чатель изначально создавался для приборов дистанционного управления те-
левизорами. Лишь по счастливой случайности было обнаружено, что его ко-
нический пучок с углом расхождения около 60 градусов весьма подходит для
эффективного перекрытия пространства и снижает процент ложных тревог в
системах сигнализации.
Точно так же наиболее разработанным в других областях техники оказа-
лось микроволновое оборудование с длиной волны в 3 см. Вместо проводов
электромагнитная энергия подобной частоты могла передаваться по трубча-
тым волноводам. Такие волноводы производились в большом количестве, и
когда стало очевидно, что пучок трехсантиметровых волн, входящих через
открытый конец трубки с размерами 2,5 х 1,25 см имеет угловые параметры
60 х 120 градусов, была принята именно такая конструкция без всяких "ан-
тенн" и формирующих насадок. Вы можете спросить, какие размеры каким со-
ответствуют, и я вам отвечу: 2,5 см - 60-ти градусам, а 1,25 см - 120
или наоборот.
Пожалуй, ответ проще всего представить себе в виде ряби на поверхнос-
ти емкости с водой. Подобная аналогия уже использовалась в 1801 году То-
масом Янгом для объяснения поведения волн света. Если вы посмотрите на
поверхность воды так, под определенным углом, вы увидите, что поперек
емкости установлена перегородка с небольшим отверстием в ней. Всколыхнув
воду, вы заметите, что волны равномерно движутся к отверстию, но проходя
через него, они начинают быстро расходиться под большим углом. Если в
перегородке оставлено широкое отверстие, и те же самые волны свободно
через него проходят, лишь немного расходясь. Чем больше будет отверстие,
тем меньше угол расхождения. Следовательно, соответствие размеров пучка
и волновода, указанные выше, имеет смысл, хотя и кажется странным.
Если вы начинаете улавливать важность длины волны для ультразвука и
МКВ, то запомните такую формулу: чем больше сечение выходного отверстия
в одной из плоскостей - если его исчислять в количестве укладывающихся
длин волн, - тем меньше угол расхождения и угловое сечение пучка.
Получая на выходе волновода слишком широкий пучок МКВ-излучения, мы
можем снабдить его специальной насадкой, называемой "рупор". Не имеет
смысла углубляться в детали конструкции этих насадок, но о них полезно
помнить следующее:
1) угловые размеры пучка обратно пропорциональны 1 размерам отверстия
волновода. Следовательно, чтобы уменьшить угол с 80 до 20 градусов, нам
понадобится увеличить одну из сторон отверстия в 4 раза;
2) угловые размеры пучка прямо пропорциональны длине волны. Это зна-
чит, что если нам известны ожидаемые размеры пучка для данного отверстия
при длине волны в 9 см, то эти размеры уменьшатся втрое при переходе в
диапазон 3 см.
Схемы перекрытия пространства детектором
Желая узнать, сможет ли радар, установленный в конкретном месте, об-
наружить нарушителя во всех положениях в пределах защищаемого прост-
ранства, мы задаем вопрос: "А какова схема перекрытия пространства у
этого радара?"
Хотя эти схемы в действительности трехмерны, на бумаге их придется
изобразить в двух измерениях. Следовательно, получится две картинки. Од-
на из них показывает сечение пучка в горизонтальной плоскости, а другая
- в вертикальной. Эти схемы в трехмерном изображении обычно напоминают
грушу или яблоко с "черенком" у радара и противоположной стороны у гра-
ницы обнаружения.
Размеры зоны перекрытия обычно можно рассчитать, исходя из ширины
пучка, но его форму можно установить лишь на практике. Практические ис-
пытания обычно состоят из медленных прогулок по охраняемому помещению и
нанесению на карту позиций, в которых радар срабатывает. Если приходится
принимать во внимание возможность избежать обнаружения путем замедленно-
го движения, расчеты зоны проводятся при наименьшей возможной скорости
передвижения. Полезно также испытать радар на обнаружение нарушителя,
пытающегося соблюдать одну и ту же дистанцию от источника МКВ-излучения.
Таким образом вы удостоверитесь, что система срабатывает при самом мини-
мальном допплеровском сдвиге. Если при испытании на очень малых скорос-
тях выявляются проблемы в работе системы, возможно, стоит позаимствовать
некоторые принципы пассивного инфракрасного обнаружения. Вертикальное
сечение зоны перекрытия можно установить, поставив радар на бок и заме-
рив его так же, как и горизонтальный - передвижением.
В следующем разделе мы обсудим интересное применение зон перекрытия
для создания наружных радарных систем.
Наружные радарные системы
При рассмотрении типов зон перекрытия подчеркивалось, что для испыта-
ний необходимо участие человека. Практически невозможно создать манекен,
чьи отражающие характеристики в МКВ-диапазоне совпадают с человеческими.
Манекен не способен также имитировать всю гамму добавочных частот отра-
женного излучения, возникающего при движении конечностей, а она крайне
важна для прибора, работающего на допплеровском принципе. Чем меньше
рост нарушителя, тем меньше мощность эха и дистанция надежного обнаруже-
ния.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95